Domination versus edge domination
We propose the conjecture that the domination number γ(G) of a Δ-regular graph G with Δ≥1 is always at most its edge domination number γe(G), which coincides with the domination number of its line graph. We prove that γ(G)≤1+2(Δ−1)Δ2Δγe(G) for general Δ≥1, and γ(G)≤76−1204γe(G) for Δ=3. Furthermore,...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2020-10, Vol.285, p.343-349 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose the conjecture that the domination number γ(G) of a Δ-regular graph G with Δ≥1 is always at most its edge domination number γe(G), which coincides with the domination number of its line graph. We prove that γ(G)≤1+2(Δ−1)Δ2Δγe(G) for general Δ≥1, and γ(G)≤76−1204γe(G) for Δ=3. Furthermore, we verify our conjecture for cubic claw-free graphs. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2020.05.030 |