Influence of bubbles characteristics on the skin friction and velocity gradient on solid sphere
A detailed study of the effects of individual bubbles at high gas flow‐rate has shown, that the dominant influence on skin friction over a solid sphere is the bubble volume in compared to bubble frequency. Nevertheless the bubble frequency is very important in case of low gas flow‐rate. Referring to...
Gespeichert in:
Veröffentlicht in: | Canadian journal of chemical engineering 2011-12, Vol.89 (6), p.1358-1365 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A detailed study of the effects of individual bubbles at high gas flow‐rate has shown, that the dominant influence on skin friction over a solid sphere is the bubble volume in compared to bubble frequency. Nevertheless the bubble frequency is very important in case of low gas flow‐rate. Referring to bubbles produced by a gas distributor, statistical and spectral analyses were performed to study the influence of bubbling on exposure time and magnitude of fluctuations. Referring to a calibrated bubble train, the existence of critical frequency is demonstrated. A bubble with larger volume and a mobile, oscillatory surface generates larger velocity gradient. In the case of gas distribution, histograms of the velocity gradient for a 2 mm glass sphere creating bubble coalescence reveal the maximum exceeds 48 000 s−1 in the front zone and 2000 s−1 in the rear zone (θ = 180°). For 5 mm plastic spheres creating bubble break‐up, the maximum of the velocity gradient is only 8100 s−1 for the front part of the sphere and 2000 s−1 in the rear zone. |
---|---|
ISSN: | 0008-4034 1939-019X 1939-019X |
DOI: | 10.1002/cjce.20647 |