Solidity of Type III Bernoulli Crossed Products
We generalize a theorem of Chifan and Ioana by proving that for any, possibly type III, amenable von Neumann algebra A 0 , any faithful normal state φ 0 and any discrete group Γ , the associated Bernoulli crossed product von Neumann algebra M = ( A 0 , φ 0 ) ⊗ ¯ Γ ⋊ Γ is solid relatively to L ( Γ )...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2017-03, Vol.350 (3), p.897-916 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize a theorem of Chifan and Ioana by proving that for any, possibly type III, amenable von Neumann algebra
A
0
, any faithful normal state
φ
0
and any discrete group
Γ
, the associated Bernoulli crossed product von Neumann algebra
M
=
(
A
0
,
φ
0
)
⊗
¯
Γ
⋊
Γ
is solid relatively to
L
(
Γ
)
. In particular, if
L
(
Γ
)
is solid then
M
is solid and if
Γ
is non-amenable and
A
0
≠
C
then
M
is a full prime factor. This gives many new examples of solid or prime type III factors. Following Chifan and Ioana, we also obtain the first examples of solid non-amenable type III equivalence relations. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-016-2717-5 |