Recent Changes in the Atmospheric Circulation Patterns during the Dry-to-Wet Transition Season in South Tropical South America (1979–2020): Impacts on Precipitation and Fire Season
We analyze the characteristics of atmospheric variations over tropical South America using the pattern recognition framework of weather typing or atmospheric circulation patterns (CPs). During 1979–2020, nine CPs are defined in the region, using a k-means algorithm based on daily unfiltered 850-hPa...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2021-11, Vol.34 (22), p.9025-9042 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze the characteristics of atmospheric variations over tropical South America using the pattern recognition framework of weather typing or atmospheric circulation patterns (CPs). During 1979–2020, nine CPs are defined in the region, using a k-means algorithm based on daily unfiltered 850-hPa winds over 10°N–30°S, 90°–30°W. CPs are primarily interpreted as stages of the annual cycle of the low-level circulation. We identified three "winter" CPs (CP7, CP8, and CP9), three "summer" CPs (CP3, CP4, and CP5), and three "transitional" CPs (CP1, CP2, and CP6). Significant long-term changes are detected during the dry-to-wet transition season (July–October) over southern tropical South America (STSA). One of the wintertime patterns (CP9) increases from 20% in the 1980s to 35% in the last decade while the "transitional" CP2 decreases from 13% to 7%. CP9 is characterized by enhancement of the South American low-level jet and increasing atmospheric subsidence over STSA. CP2 is characterized by southerly cold-air incursions and anomalous convective activity over STSA. The years characterized by high frequency of CP9 and low frequency of CP2 during the dry-to-wet transition season are associated with a delayed South American monsoon onset and anomalous dry conditions over STSA. Consistently, a higher frequency of CP9 intensifies the fire season over STSA (1999–2020). Over the Brazilian states of Maranhão, Tocantins, Goiás, and São Paulo, the seasonal frequency of CP9 explains around 35%–44% of the interannual variations of fire counts. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/JCLI-D-21-0303.1 |