Universal families of Eulerian multiple zeta values in positive characteristic

We study positive characteristic multiple zeta values associated to general curves over Fq together with an Fq-rational point ∞ as introduced by Thakur. For the case of the projective line these values were defined as analogues of classical multiple zeta values. In the present paper we first establi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2023-06, Vol.422, p.109003, Article 109003
Hauptverfasser: Chung, Kwun, Ngo Dac, Tuan, Pellarin, Federico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study positive characteristic multiple zeta values associated to general curves over Fq together with an Fq-rational point ∞ as introduced by Thakur. For the case of the projective line these values were defined as analogues of classical multiple zeta values. In the present paper we first establish a general non-commutative factorization of exponential series associated to certain lattices of rank one. Next we introduce universal families of multiple zeta values of Thakur and show that they are Eulerian in full generality. In particular, we prove a conjecture of Lara Rodríguez and Thakur in [28]. One of the main ingredients of the proofs is the notion of L-series in Tate algebras introduced by the third author [31] in 2012.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2023.109003