A Logic Based Approach to Finding Real Singularities of Implicit Ordinary Differential Equations

We discuss the effective computation of geometric singularities of implicit ordinary differential equations over the real numbers using methods from logic. Via the Vessiot theory of differential equations, geometric singularities can be characterised as points where the behaviour of a certain linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in computer science 2021-06, Vol.15 (2), p.333-352
Hauptverfasser: Seiler, Werner M., Seiß, Matthias, Sturm, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss the effective computation of geometric singularities of implicit ordinary differential equations over the real numbers using methods from logic. Via the Vessiot theory of differential equations, geometric singularities can be characterised as points where the behaviour of a certain linear system of equations changes. These points can be discovered using a specifically adapted parametric generalisation of Gaussian elimination combined with heuristic simplification techniques and real quantifier elimination methods. We demonstrate the relevance and applicability of our approach with computational experiments using a prototypical implementation in Reduce .
ISSN:1661-8270
1661-8289
DOI:10.1007/s11786-020-00485-x