Internal Friction in Solids II. General Theory of Thermoelastic Internal Friction

Stress inhomogeneities in a vibrating body give rise to fluctuations in temperature, and hence to local heat currents. These heat currents increase the entropy of the vibrating solid, and hence are a source of internal friction. The general theory of this internal friction is here developed. The sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review 1938-01, Vol.53 (1), p.90-99
1. Verfasser: Zener, Clarence
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stress inhomogeneities in a vibrating body give rise to fluctuations in temperature, and hence to local heat currents. These heat currents increase the entropy of the vibrating solid, and hence are a source of internal friction. The general theory of this internal friction is here developed. The simplest example of stress inhomogeneity is that occurring in the transverse vibrations of reeds and wires. Explicit formulae are obtained for reeds and wires, and the effect is calculated of crystal orientation in single crystal specimens. Microscopic stress inhomogeneities arise from imperfections, such as cavities, and from the elastic anisotropy of the individual crystallites. The internal friction due to spherical cavities is calculated. The internal friction due to elastic anisotropy is investigated for cubic metals, and is found to be greatest for lead, least for aluminum and tungsten.
ISSN:0031-899X
1536-6065
DOI:10.1103/PhysRev.53.90