Kernels of conditional determinantal measures and the Lyons–Peres completeness conjecture

The main result of this paper, Theorem 1.4, establishes a conjecture of Lyons and Peres: for a determinantal point process governed by a self-adjoint reproducing kernel, the system of kernels sampled at the points of a random configuration is complete in the range of the kernel. A key step in the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2021-01, Vol.23 (5), p.1477-1519
Hauptverfasser: Bufetov, Alexander I., Qiu, Yanqi, Shamov, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main result of this paper, Theorem 1.4, establishes a conjecture of Lyons and Peres: for a determinantal point process governed by a self-adjoint reproducing kernel, the system of kernels sampled at the points of a random configuration is complete in the range of the kernel. A key step in the proof, Lemma 1.9, states that conditioning on the configuration in a subset preserves the determinantal property, and the main Lemma 1.10 is a new local property for kernels of conditional point processes. In Theorem 1.6 we prove the triviality of the tail \sigma -algebra for determinantal point processes governed by self-adjoint kernels.
ISSN:1435-9855
1435-9863
DOI:10.4171/jems/1038