Kernels of conditional determinantal measures and the Lyons–Peres completeness conjecture
The main result of this paper, Theorem 1.4, establishes a conjecture of Lyons and Peres: for a determinantal point process governed by a self-adjoint reproducing kernel, the system of kernels sampled at the points of a random configuration is complete in the range of the kernel. A key step in the pr...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2021-01, Vol.23 (5), p.1477-1519 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main result of this paper, Theorem 1.4, establishes a conjecture of Lyons and Peres: for a determinantal point process governed by a self-adjoint reproducing kernel, the system of kernels sampled at the points of a random configuration is complete in the range of the kernel. A key step in the proof, Lemma 1.9, states that conditioning on the configuration in a subset preserves the determinantal property, and the main Lemma 1.10 is a new local property for kernels of conditional point processes. In Theorem 1.6 we prove the triviality of the tail \sigma -algebra for determinantal point processes governed by self-adjoint kernels. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/jems/1038 |