Gate‐Tunable Negative Differential Resistance in Next‐Generation Ge Nanodevices and their Performance Metrics

In the quest to push the contemporary scientific boundaries in nanoelectronics, Ge is considered a key building block extending device performances, delivering enhanced functionalities. In this work, a quasi‐1D monocrystalline and monolithic Al–Ge–Al nanowire heterostructure are embedded into a nove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced electronic materials 2021-03, Vol.7 (3), p.n/a
Hauptverfasser: Böckle, Raphael, Sistani, Masiar, Eysin, Kilian, Bartmann, Maximilian G., Luong, Minh Anh, den Hertog, Martien I., Lugstein, Alois, Weber, Walter M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Advanced electronic materials
container_volume 7
creator Böckle, Raphael
Sistani, Masiar
Eysin, Kilian
Bartmann, Maximilian G.
Luong, Minh Anh
den Hertog, Martien I.
Lugstein, Alois
Weber, Walter M.
description In the quest to push the contemporary scientific boundaries in nanoelectronics, Ge is considered a key building block extending device performances, delivering enhanced functionalities. In this work, a quasi‐1D monocrystalline and monolithic Al–Ge–Al nanowire heterostructure are embedded into a novel field‐effect transistor architecture capable of combining Ge based electronics with an electrostatically tunable negative differential resistance (NDR) distinctly observable at room temperature. In this regard, a detailed study of the key metrics of NDR in Ge is presented. Most notably, a highly efficient and low‐footprint platform is demonstrated, paving the way for potential applications such as fast switching multi‐valued logic devices, static memory cells, or high‐frequency oscillators, all implemented in one fully complementary metal–oxide–semiconductor compatible Al‐Ge based device platform. Nanoscale Ge is considered a key building block extending device performance and delivering enhanced functionalities. Here, a highly efficient and low‐footprint architecture comprising doping‐free Ge and monocrystalline Al nanowire contacts revealing a strong and reproducible electrostatically tunable negative differential resistance (NDR) at room temperature is demonstrated. Most notably, a systematic study of the key performance metrics of NDR is presented.
doi_str_mv 10.1002/aelm.202001178
format Article
fullrecord <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03429125v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AELM202001178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3638-5274f250f522f4d4134bafc2a3860a461588deaa1c4409728c7e252b6ab0696e3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQQCMEElVhZfbKkGI7jpOMVSktUgoIFYnNujhnapQmYIdCNz6Bb-RLSCkqbEx3Or13wwuCE0YHjFJ-BlgtB5xyShlL0r2gx1mWhUzS-_0_-2Fw7P0j7aBERiKOesHzBFr8fP-Yv9RQVEiu8AFau0Jybo1Bh3VroSK36K1vodZIbN0xb22nTLBG18FNTSadCHVT4spq9ATqkrQLtI7coDONW36bM2yd1f4oODBQeTz-mf3g7mI8H03D_HpyORrmoY5klIYxT4ThMTUx50aUgkWiAKM5RKmkICSL07REAKaFoFnCU50gj3khoaAykxj1g9Pt3wVU6snZJbi1asCq6TBXmxuNBM8Yj1esYwdbVrvGe4dmJzCqNn3Vpq_a9e2EbCu82grX_9BqOM5nv-4X_GWA9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gate‐Tunable Negative Differential Resistance in Next‐Generation Ge Nanodevices and their Performance Metrics</title><source>Access via Wiley Online Library</source><creator>Böckle, Raphael ; Sistani, Masiar ; Eysin, Kilian ; Bartmann, Maximilian G. ; Luong, Minh Anh ; den Hertog, Martien I. ; Lugstein, Alois ; Weber, Walter M.</creator><creatorcontrib>Böckle, Raphael ; Sistani, Masiar ; Eysin, Kilian ; Bartmann, Maximilian G. ; Luong, Minh Anh ; den Hertog, Martien I. ; Lugstein, Alois ; Weber, Walter M.</creatorcontrib><description>In the quest to push the contemporary scientific boundaries in nanoelectronics, Ge is considered a key building block extending device performances, delivering enhanced functionalities. In this work, a quasi‐1D monocrystalline and monolithic Al–Ge–Al nanowire heterostructure are embedded into a novel field‐effect transistor architecture capable of combining Ge based electronics with an electrostatically tunable negative differential resistance (NDR) distinctly observable at room temperature. In this regard, a detailed study of the key metrics of NDR in Ge is presented. Most notably, a highly efficient and low‐footprint platform is demonstrated, paving the way for potential applications such as fast switching multi‐valued logic devices, static memory cells, or high‐frequency oscillators, all implemented in one fully complementary metal–oxide–semiconductor compatible Al‐Ge based device platform. Nanoscale Ge is considered a key building block extending device performance and delivering enhanced functionalities. Here, a highly efficient and low‐footprint architecture comprising doping‐free Ge and monocrystalline Al nanowire contacts revealing a strong and reproducible electrostatically tunable negative differential resistance (NDR) at room temperature is demonstrated. Most notably, a systematic study of the key performance metrics of NDR is presented.</description><identifier>ISSN: 2199-160X</identifier><identifier>EISSN: 2199-160X</identifier><identifier>DOI: 10.1002/aelm.202001178</identifier><language>eng</language><publisher>Wiley</publisher><subject>Condensed Matter ; gate‐tunable resistance ; germanium ; heterostructures ; Materials Science ; nanowires ; negative differential resistance ; Physics</subject><ispartof>Advanced electronic materials, 2021-03, Vol.7 (3), p.n/a</ispartof><rights>2021 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3638-5274f250f522f4d4134bafc2a3860a461588deaa1c4409728c7e252b6ab0696e3</citedby><cites>FETCH-LOGICAL-c3638-5274f250f522f4d4134bafc2a3860a461588deaa1c4409728c7e252b6ab0696e3</cites><orcidid>0000-0003-0781-9249 ; 0000-0001-5730-234X ; 0000-0001-9504-5671 ; 0000-0002-0876-2400 ; 0000-0002-9556-1550 ; 0000-0001-5693-4775 ; 0000-0003-4446-1450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faelm.202001178$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faelm.202001178$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03429125$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Böckle, Raphael</creatorcontrib><creatorcontrib>Sistani, Masiar</creatorcontrib><creatorcontrib>Eysin, Kilian</creatorcontrib><creatorcontrib>Bartmann, Maximilian G.</creatorcontrib><creatorcontrib>Luong, Minh Anh</creatorcontrib><creatorcontrib>den Hertog, Martien I.</creatorcontrib><creatorcontrib>Lugstein, Alois</creatorcontrib><creatorcontrib>Weber, Walter M.</creatorcontrib><title>Gate‐Tunable Negative Differential Resistance in Next‐Generation Ge Nanodevices and their Performance Metrics</title><title>Advanced electronic materials</title><description>In the quest to push the contemporary scientific boundaries in nanoelectronics, Ge is considered a key building block extending device performances, delivering enhanced functionalities. In this work, a quasi‐1D monocrystalline and monolithic Al–Ge–Al nanowire heterostructure are embedded into a novel field‐effect transistor architecture capable of combining Ge based electronics with an electrostatically tunable negative differential resistance (NDR) distinctly observable at room temperature. In this regard, a detailed study of the key metrics of NDR in Ge is presented. Most notably, a highly efficient and low‐footprint platform is demonstrated, paving the way for potential applications such as fast switching multi‐valued logic devices, static memory cells, or high‐frequency oscillators, all implemented in one fully complementary metal–oxide–semiconductor compatible Al‐Ge based device platform. Nanoscale Ge is considered a key building block extending device performance and delivering enhanced functionalities. Here, a highly efficient and low‐footprint architecture comprising doping‐free Ge and monocrystalline Al nanowire contacts revealing a strong and reproducible electrostatically tunable negative differential resistance (NDR) at room temperature is demonstrated. Most notably, a systematic study of the key performance metrics of NDR is presented.</description><subject>Condensed Matter</subject><subject>gate‐tunable resistance</subject><subject>germanium</subject><subject>heterostructures</subject><subject>Materials Science</subject><subject>nanowires</subject><subject>negative differential resistance</subject><subject>Physics</subject><issn>2199-160X</issn><issn>2199-160X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLFOwzAQQCMEElVhZfbKkGI7jpOMVSktUgoIFYnNujhnapQmYIdCNz6Bb-RLSCkqbEx3Or13wwuCE0YHjFJ-BlgtB5xyShlL0r2gx1mWhUzS-_0_-2Fw7P0j7aBERiKOesHzBFr8fP-Yv9RQVEiu8AFau0Jybo1Bh3VroSK36K1vodZIbN0xb22nTLBG18FNTSadCHVT4spq9ATqkrQLtI7coDONW36bM2yd1f4oODBQeTz-mf3g7mI8H03D_HpyORrmoY5klIYxT4ThMTUx50aUgkWiAKM5RKmkICSL07REAKaFoFnCU50gj3khoaAykxj1g9Pt3wVU6snZJbi1asCq6TBXmxuNBM8Yj1esYwdbVrvGe4dmJzCqNn3Vpq_a9e2EbCu82grX_9BqOM5nv-4X_GWA9Q</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Böckle, Raphael</creator><creator>Sistani, Masiar</creator><creator>Eysin, Kilian</creator><creator>Bartmann, Maximilian G.</creator><creator>Luong, Minh Anh</creator><creator>den Hertog, Martien I.</creator><creator>Lugstein, Alois</creator><creator>Weber, Walter M.</creator><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0781-9249</orcidid><orcidid>https://orcid.org/0000-0001-5730-234X</orcidid><orcidid>https://orcid.org/0000-0001-9504-5671</orcidid><orcidid>https://orcid.org/0000-0002-0876-2400</orcidid><orcidid>https://orcid.org/0000-0002-9556-1550</orcidid><orcidid>https://orcid.org/0000-0001-5693-4775</orcidid><orcidid>https://orcid.org/0000-0003-4446-1450</orcidid></search><sort><creationdate>202103</creationdate><title>Gate‐Tunable Negative Differential Resistance in Next‐Generation Ge Nanodevices and their Performance Metrics</title><author>Böckle, Raphael ; Sistani, Masiar ; Eysin, Kilian ; Bartmann, Maximilian G. ; Luong, Minh Anh ; den Hertog, Martien I. ; Lugstein, Alois ; Weber, Walter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3638-5274f250f522f4d4134bafc2a3860a461588deaa1c4409728c7e252b6ab0696e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Condensed Matter</topic><topic>gate‐tunable resistance</topic><topic>germanium</topic><topic>heterostructures</topic><topic>Materials Science</topic><topic>nanowires</topic><topic>negative differential resistance</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böckle, Raphael</creatorcontrib><creatorcontrib>Sistani, Masiar</creatorcontrib><creatorcontrib>Eysin, Kilian</creatorcontrib><creatorcontrib>Bartmann, Maximilian G.</creatorcontrib><creatorcontrib>Luong, Minh Anh</creatorcontrib><creatorcontrib>den Hertog, Martien I.</creatorcontrib><creatorcontrib>Lugstein, Alois</creatorcontrib><creatorcontrib>Weber, Walter M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böckle, Raphael</au><au>Sistani, Masiar</au><au>Eysin, Kilian</au><au>Bartmann, Maximilian G.</au><au>Luong, Minh Anh</au><au>den Hertog, Martien I.</au><au>Lugstein, Alois</au><au>Weber, Walter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate‐Tunable Negative Differential Resistance in Next‐Generation Ge Nanodevices and their Performance Metrics</atitle><jtitle>Advanced electronic materials</jtitle><date>2021-03</date><risdate>2021</risdate><volume>7</volume><issue>3</issue><epage>n/a</epage><issn>2199-160X</issn><eissn>2199-160X</eissn><abstract>In the quest to push the contemporary scientific boundaries in nanoelectronics, Ge is considered a key building block extending device performances, delivering enhanced functionalities. In this work, a quasi‐1D monocrystalline and monolithic Al–Ge–Al nanowire heterostructure are embedded into a novel field‐effect transistor architecture capable of combining Ge based electronics with an electrostatically tunable negative differential resistance (NDR) distinctly observable at room temperature. In this regard, a detailed study of the key metrics of NDR in Ge is presented. Most notably, a highly efficient and low‐footprint platform is demonstrated, paving the way for potential applications such as fast switching multi‐valued logic devices, static memory cells, or high‐frequency oscillators, all implemented in one fully complementary metal–oxide–semiconductor compatible Al‐Ge based device platform. Nanoscale Ge is considered a key building block extending device performance and delivering enhanced functionalities. Here, a highly efficient and low‐footprint architecture comprising doping‐free Ge and monocrystalline Al nanowire contacts revealing a strong and reproducible electrostatically tunable negative differential resistance (NDR) at room temperature is demonstrated. Most notably, a systematic study of the key performance metrics of NDR is presented.</abstract><pub>Wiley</pub><doi>10.1002/aelm.202001178</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0781-9249</orcidid><orcidid>https://orcid.org/0000-0001-5730-234X</orcidid><orcidid>https://orcid.org/0000-0001-9504-5671</orcidid><orcidid>https://orcid.org/0000-0002-0876-2400</orcidid><orcidid>https://orcid.org/0000-0002-9556-1550</orcidid><orcidid>https://orcid.org/0000-0001-5693-4775</orcidid><orcidid>https://orcid.org/0000-0003-4446-1450</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2199-160X
ispartof Advanced electronic materials, 2021-03, Vol.7 (3), p.n/a
issn 2199-160X
2199-160X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03429125v1
source Access via Wiley Online Library
subjects Condensed Matter
gate‐tunable resistance
germanium
heterostructures
Materials Science
nanowires
negative differential resistance
Physics
title Gate‐Tunable Negative Differential Resistance in Next‐Generation Ge Nanodevices and their Performance Metrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate%E2%80%90Tunable%20Negative%20Differential%20Resistance%20in%20Next%E2%80%90Generation%20Ge%20Nanodevices%20and%20their%20Performance%20Metrics&rft.jtitle=Advanced%20electronic%20materials&rft.au=B%C3%B6ckle,%20Raphael&rft.date=2021-03&rft.volume=7&rft.issue=3&rft.epage=n/a&rft.issn=2199-160X&rft.eissn=2199-160X&rft_id=info:doi/10.1002/aelm.202001178&rft_dat=%3Cwiley_hal_p%3EAELM202001178%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true