The Distribution of Rational Numbers on Cantor’s Middle Thirds Set
We give a heuristic argument predicting that the number ) of rationals on Cantor’s middle thirds set such that gcd( )=1 and , has asymptotic growth ), for = dim . Our heuristic is related to similar heuristics and conjectures proposed by Fishman and Simmons. We also describe extensive numerical comp...
Gespeichert in:
Veröffentlicht in: | Uniform distribution theory 2020-12, Vol.15 (2), p.73-92 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a heuristic argument predicting that the number
) of rationals
on Cantor’s middle thirds set
such that gcd(
)=1 and
, has asymptotic growth
), for
= dim
. Our heuristic is related to similar heuristics and conjectures proposed by Fishman and Simmons. We also describe extensive numerical computations supporting this heuristic. Our heuristic predicts a similar asymptotic if
is replaced with any similar fractal with a description in terms of missing digits in a base expansion. Interest in the growth of
(
)is motivated by a problem of Mahler on intrinsic Diophantine approximation on |
---|---|
ISSN: | 2309-5377 2309-5377 1336-913X |
DOI: | 10.2478/udt-2020-0011 |