The Distribution of Rational Numbers on Cantor’s Middle Thirds Set

We give a heuristic argument predicting that the number ) of rationals on Cantor’s middle thirds set such that gcd( )=1 and , has asymptotic growth ), for = dim . Our heuristic is related to similar heuristics and conjectures proposed by Fishman and Simmons. We also describe extensive numerical comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Uniform distribution theory 2020-12, Vol.15 (2), p.73-92
Hauptverfasser: Rahm, Alexander D., Solomon, Noam, Trauthwein, Tara, Weiss, Barak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a heuristic argument predicting that the number ) of rationals on Cantor’s middle thirds set such that gcd( )=1 and , has asymptotic growth ), for = dim . Our heuristic is related to similar heuristics and conjectures proposed by Fishman and Simmons. We also describe extensive numerical computations supporting this heuristic. Our heuristic predicts a similar asymptotic if is replaced with any similar fractal with a description in terms of missing digits in a base expansion. Interest in the growth of ( )is motivated by a problem of Mahler on intrinsic Diophantine approximation on
ISSN:2309-5377
2309-5377
1336-913X
DOI:10.2478/udt-2020-0011