Common invariant subspace and commuting matrices

Let K be a perfect field, L be an extension field of K and A,B∈Mn(K). If A has n distinct eigenvalues in L that are explicitly known, then we can check if A,B are simultaneously triangularizable over L. Now we assume that A,B have a common invariant proper vector subspace of dimension k over an exte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2013-04, Vol.438 (7), p.3030-3038
1. Verfasser: Bourgeois, Gérald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let K be a perfect field, L be an extension field of K and A,B∈Mn(K). If A has n distinct eigenvalues in L that are explicitly known, then we can check if A,B are simultaneously triangularizable over L. Now we assume that A,B have a common invariant proper vector subspace of dimension k over an extension field of K and that χA, the characteristic polynomial of A, is irreducible over K. Let G be the Galois group of χA. We show the following results (i)If k∈{1,n-1}, then A,B commute.(ii)If 1⩽k⩽n-1 and G=Sn or G=An, then AB=BA.(iii)If 1⩽k⩽n-1 and n is a prime number, then AB=BA. Yet, when n=4,k=2, we show that A,B do not necessarily commute if G is not S4 or A4. Finally we apply the previous results to solving a matrix equation.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2012.11.034