Common invariant subspace and commuting matrices
Let K be a perfect field, L be an extension field of K and A,B∈Mn(K). If A has n distinct eigenvalues in L that are explicitly known, then we can check if A,B are simultaneously triangularizable over L. Now we assume that A,B have a common invariant proper vector subspace of dimension k over an exte...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2013-04, Vol.438 (7), p.3030-3038 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let K be a perfect field, L be an extension field of K and A,B∈Mn(K). If A has n distinct eigenvalues in L that are explicitly known, then we can check if A,B are simultaneously triangularizable over L. Now we assume that A,B have a common invariant proper vector subspace of dimension k over an extension field of K and that χA, the characteristic polynomial of A, is irreducible over K. Let G be the Galois group of χA. We show the following results
(i)If k∈{1,n-1}, then A,B commute.(ii)If 1⩽k⩽n-1 and G=Sn or G=An, then AB=BA.(iii)If 1⩽k⩽n-1 and n is a prime number, then AB=BA.
Yet, when n=4,k=2, we show that A,B do not necessarily commute if G is not S4 or A4. Finally we apply the previous results to solving a matrix equation. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2012.11.034 |