A novel machine learning-derived decision tree including uPA/PAI-1 for breast cancer care

Background uPA and PAI-1 are breast cancer biomarkers that evaluate the benefit of chemotherapy (CT) for HER2-negative, estrogen receptor-positive, low or intermediate grade patients. Our objectives were to observe clinical routine use of uPA/PAI-1 and to build a new therapeutic decision tree integr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical chemistry and laboratory medicine 2019-05, Vol.57 (6), p.901-910
Hauptverfasser: Reix, Nathalie, Lodi, Massimo, Jankowski, Stéphane, Molière, Sébastien, Luporsi, Elisabeth, Leblanc, Suzanne, Scheer, Louise, Ibnouhsein, Issam, Benabu, Julie-Charlotte, Gabriele, Victor, Guggiola, Alberto, Lessinger, Jean-Marc, Chenard, Marie-Pierre, Alpy, Fabien, Bellocq, Jean-Pierre, Neuberger, Karl, Tomasetto, Catherine, Mathelin, Carole
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 910
container_issue 6
container_start_page 901
container_title Clinical chemistry and laboratory medicine
container_volume 57
creator Reix, Nathalie
Lodi, Massimo
Jankowski, Stéphane
Molière, Sébastien
Luporsi, Elisabeth
Leblanc, Suzanne
Scheer, Louise
Ibnouhsein, Issam
Benabu, Julie-Charlotte
Gabriele, Victor
Guggiola, Alberto
Lessinger, Jean-Marc
Chenard, Marie-Pierre
Alpy, Fabien
Bellocq, Jean-Pierre
Neuberger, Karl
Tomasetto, Catherine
Mathelin, Carole
description Background uPA and PAI-1 are breast cancer biomarkers that evaluate the benefit of chemotherapy (CT) for HER2-negative, estrogen receptor-positive, low or intermediate grade patients. Our objectives were to observe clinical routine use of uPA/PAI-1 and to build a new therapeutic decision tree integrating uPA/PAI-1. Methods We observed the concordance between CT indications proposed by a canonical decision tree representative of French practices (not including uPA/PAI-1) and actual CT prescriptions decided by a medical board which included uPA/PAI-1. We used a method of machine learning for the analysis of concordant and non-concordant CT prescriptions to generate a novel scheme for CT indications. Results We observed a concordance rate of 71% between indications proposed by the canonical decision tree and actual prescriptions. Discrepancies were due to CT contraindications, high tumor grade and uPA/PAI-1 level. Altogether, uPA/PAI-1 were a decisive factor for the final decision in 17% of cases by avoiding CT prescription in two-thirds of cases and inducing CT in other cases. Remarkably, we noted that in routine practice, elevated uPA/PAI-1 levels seem not to be considered as a sufficient indication for CT for N≤3, Ki 67≤30% tumors, but are considered in association with at least one additional marker such as Ki 67>14%, vascular invasion and ER-H score
doi_str_mv 10.1515/cclm-2018-1065
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03417166v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222882387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-12a85e80fec2ef602b7f030dd52e3ad9841d2e3e4981cafc57fee57daa39b03f3</originalsourceid><addsrcrecordid>eNptkc1rFTEUxQdRbK1uXUrAjS6mzc3HJA_cDEVt4YFd6MJVyEtu2pSZTE1mnvS_N-OrFcS7uYfkd89NOE3zGugpSJBnzg1jyyjoFmgnnzTHILhqBefw9LcWbdcxOGpelHJLKUgp1PPmiFPNtRb0uPnekzTtcSCjdTcxIRnQ5hTTdesxxz164tHFEqdE5oxIYnLD4us9Wa76s6v-sgUSpkx2GW2ZibPJYa4t48vmWbBDwVcP_aT59unj1_OLdvvl8-V5v22dADq3wKyWqGlAxzB0lO1UoJx6Lxly6zdagK8KxUaDs8FJFRCl8tbyzY7ywE-a9wffGzuYuxxHm-_NZKO56LdmPaNcgIKu20Nl3x3Yuzz9WLDMZozF4TDYhNNSDAOtpVaKsoq-_Qe9nZac6k8Mq6U141pV6vRAuTyVkjE8vgCoWQMya0BmDcisAdWBNw-2y25E_4j_SaQCHw7ATzvMmD1e5-W-ir_r_-8sVbehwH8BnSed5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222882387</pqid></control><display><type>article</type><title>A novel machine learning-derived decision tree including uPA/PAI-1 for breast cancer care</title><source>MEDLINE</source><source>De Gruyter journals</source><creator>Reix, Nathalie ; Lodi, Massimo ; Jankowski, Stéphane ; Molière, Sébastien ; Luporsi, Elisabeth ; Leblanc, Suzanne ; Scheer, Louise ; Ibnouhsein, Issam ; Benabu, Julie-Charlotte ; Gabriele, Victor ; Guggiola, Alberto ; Lessinger, Jean-Marc ; Chenard, Marie-Pierre ; Alpy, Fabien ; Bellocq, Jean-Pierre ; Neuberger, Karl ; Tomasetto, Catherine ; Mathelin, Carole</creator><creatorcontrib>Reix, Nathalie ; Lodi, Massimo ; Jankowski, Stéphane ; Molière, Sébastien ; Luporsi, Elisabeth ; Leblanc, Suzanne ; Scheer, Louise ; Ibnouhsein, Issam ; Benabu, Julie-Charlotte ; Gabriele, Victor ; Guggiola, Alberto ; Lessinger, Jean-Marc ; Chenard, Marie-Pierre ; Alpy, Fabien ; Bellocq, Jean-Pierre ; Neuberger, Karl ; Tomasetto, Catherine ; Mathelin, Carole</creatorcontrib><description>Background uPA and PAI-1 are breast cancer biomarkers that evaluate the benefit of chemotherapy (CT) for HER2-negative, estrogen receptor-positive, low or intermediate grade patients. Our objectives were to observe clinical routine use of uPA/PAI-1 and to build a new therapeutic decision tree integrating uPA/PAI-1. Methods We observed the concordance between CT indications proposed by a canonical decision tree representative of French practices (not including uPA/PAI-1) and actual CT prescriptions decided by a medical board which included uPA/PAI-1. We used a method of machine learning for the analysis of concordant and non-concordant CT prescriptions to generate a novel scheme for CT indications. Results We observed a concordance rate of 71% between indications proposed by the canonical decision tree and actual prescriptions. Discrepancies were due to CT contraindications, high tumor grade and uPA/PAI-1 level. Altogether, uPA/PAI-1 were a decisive factor for the final decision in 17% of cases by avoiding CT prescription in two-thirds of cases and inducing CT in other cases. Remarkably, we noted that in routine practice, elevated uPA/PAI-1 levels seem not to be considered as a sufficient indication for CT for N≤3, Ki 67≤30% tumors, but are considered in association with at least one additional marker such as Ki 67&gt;14%, vascular invasion and ER-H score &lt;150. Conclusions This study highlights that in the routine clinical practice uPA/PAI-1 are never used as the sole indication for CT. Combined with other routinely used biomarkers, uPA/PAI-1 present an added value to orientate the therapeutic choice.</description><identifier>ISSN: 1434-6621</identifier><identifier>EISSN: 1437-4331</identifier><identifier>DOI: 10.1515/cclm-2018-1065</identifier><identifier>PMID: 30838840</identifier><language>eng</language><publisher>Germany: De Gruyter</publisher><subject>Adult ; Aged ; Antineoplastic Agents - therapeutic use ; Artificial intelligence ; Biomarkers ; Biomarkers, Tumor - analysis ; Breast cancer ; Breast Neoplasms - drug therapy ; Breast Neoplasms - mortality ; Breast Neoplasms - pathology ; Cancer ; Chemotherapy ; Decision Trees ; Disease-Free Survival ; ErbB-2 protein ; Estrogen receptors ; Estrogens ; Female ; Humans ; Indication ; Learning algorithms ; Levels ; Life Sciences ; Machine Learning ; Middle Aged ; Neoplasm Grading ; over- and under-treatment ; Plasminogen Activator Inhibitor 1 - analysis ; Prescriptions ; survival ; Survival Rate ; Tumors ; uPA/PAI-1 ; Urokinase-Type Plasminogen Activator - analysis</subject><ispartof>Clinical chemistry and laboratory medicine, 2019-05, Vol.57 (6), p.901-910</ispartof><rights>2019 Walter de Gruyter GmbH, Berlin/Boston</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-12a85e80fec2ef602b7f030dd52e3ad9841d2e3e4981cafc57fee57daa39b03f3</citedby><cites>FETCH-LOGICAL-c410t-12a85e80fec2ef602b7f030dd52e3ad9841d2e3e4981cafc57fee57daa39b03f3</cites><orcidid>0000-0003-0434-2895 ; 0000-0002-7680-0210 ; 0000-0002-7593-6378 ; 0000-0002-0526-0720 ; 0000-0002-1811-5848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/cclm-2018-1065/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/cclm-2018-1065/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,66497,68281</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30838840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03417166$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Reix, Nathalie</creatorcontrib><creatorcontrib>Lodi, Massimo</creatorcontrib><creatorcontrib>Jankowski, Stéphane</creatorcontrib><creatorcontrib>Molière, Sébastien</creatorcontrib><creatorcontrib>Luporsi, Elisabeth</creatorcontrib><creatorcontrib>Leblanc, Suzanne</creatorcontrib><creatorcontrib>Scheer, Louise</creatorcontrib><creatorcontrib>Ibnouhsein, Issam</creatorcontrib><creatorcontrib>Benabu, Julie-Charlotte</creatorcontrib><creatorcontrib>Gabriele, Victor</creatorcontrib><creatorcontrib>Guggiola, Alberto</creatorcontrib><creatorcontrib>Lessinger, Jean-Marc</creatorcontrib><creatorcontrib>Chenard, Marie-Pierre</creatorcontrib><creatorcontrib>Alpy, Fabien</creatorcontrib><creatorcontrib>Bellocq, Jean-Pierre</creatorcontrib><creatorcontrib>Neuberger, Karl</creatorcontrib><creatorcontrib>Tomasetto, Catherine</creatorcontrib><creatorcontrib>Mathelin, Carole</creatorcontrib><title>A novel machine learning-derived decision tree including uPA/PAI-1 for breast cancer care</title><title>Clinical chemistry and laboratory medicine</title><addtitle>Clin Chem Lab Med</addtitle><description>Background uPA and PAI-1 are breast cancer biomarkers that evaluate the benefit of chemotherapy (CT) for HER2-negative, estrogen receptor-positive, low or intermediate grade patients. Our objectives were to observe clinical routine use of uPA/PAI-1 and to build a new therapeutic decision tree integrating uPA/PAI-1. Methods We observed the concordance between CT indications proposed by a canonical decision tree representative of French practices (not including uPA/PAI-1) and actual CT prescriptions decided by a medical board which included uPA/PAI-1. We used a method of machine learning for the analysis of concordant and non-concordant CT prescriptions to generate a novel scheme for CT indications. Results We observed a concordance rate of 71% between indications proposed by the canonical decision tree and actual prescriptions. Discrepancies were due to CT contraindications, high tumor grade and uPA/PAI-1 level. Altogether, uPA/PAI-1 were a decisive factor for the final decision in 17% of cases by avoiding CT prescription in two-thirds of cases and inducing CT in other cases. Remarkably, we noted that in routine practice, elevated uPA/PAI-1 levels seem not to be considered as a sufficient indication for CT for N≤3, Ki 67≤30% tumors, but are considered in association with at least one additional marker such as Ki 67&gt;14%, vascular invasion and ER-H score &lt;150. Conclusions This study highlights that in the routine clinical practice uPA/PAI-1 are never used as the sole indication for CT. Combined with other routinely used biomarkers, uPA/PAI-1 present an added value to orientate the therapeutic choice.</description><subject>Adult</subject><subject>Aged</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Artificial intelligence</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - analysis</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - mortality</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Chemotherapy</subject><subject>Decision Trees</subject><subject>Disease-Free Survival</subject><subject>ErbB-2 protein</subject><subject>Estrogen receptors</subject><subject>Estrogens</subject><subject>Female</subject><subject>Humans</subject><subject>Indication</subject><subject>Learning algorithms</subject><subject>Levels</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Middle Aged</subject><subject>Neoplasm Grading</subject><subject>over- and under-treatment</subject><subject>Plasminogen Activator Inhibitor 1 - analysis</subject><subject>Prescriptions</subject><subject>survival</subject><subject>Survival Rate</subject><subject>Tumors</subject><subject>uPA/PAI-1</subject><subject>Urokinase-Type Plasminogen Activator - analysis</subject><issn>1434-6621</issn><issn>1437-4331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc1rFTEUxQdRbK1uXUrAjS6mzc3HJA_cDEVt4YFd6MJVyEtu2pSZTE1mnvS_N-OrFcS7uYfkd89NOE3zGugpSJBnzg1jyyjoFmgnnzTHILhqBefw9LcWbdcxOGpelHJLKUgp1PPmiFPNtRb0uPnekzTtcSCjdTcxIRnQ5hTTdesxxz164tHFEqdE5oxIYnLD4us9Wa76s6v-sgUSpkx2GW2ZibPJYa4t48vmWbBDwVcP_aT59unj1_OLdvvl8-V5v22dADq3wKyWqGlAxzB0lO1UoJx6Lxly6zdagK8KxUaDs8FJFRCl8tbyzY7ywE-a9wffGzuYuxxHm-_NZKO56LdmPaNcgIKu20Nl3x3Yuzz9WLDMZozF4TDYhNNSDAOtpVaKsoq-_Qe9nZac6k8Mq6U141pV6vRAuTyVkjE8vgCoWQMya0BmDcisAdWBNw-2y25E_4j_SaQCHw7ATzvMmD1e5-W-ir_r_-8sVbehwH8BnSed5g</recordid><startdate>20190527</startdate><enddate>20190527</enddate><creator>Reix, Nathalie</creator><creator>Lodi, Massimo</creator><creator>Jankowski, Stéphane</creator><creator>Molière, Sébastien</creator><creator>Luporsi, Elisabeth</creator><creator>Leblanc, Suzanne</creator><creator>Scheer, Louise</creator><creator>Ibnouhsein, Issam</creator><creator>Benabu, Julie-Charlotte</creator><creator>Gabriele, Victor</creator><creator>Guggiola, Alberto</creator><creator>Lessinger, Jean-Marc</creator><creator>Chenard, Marie-Pierre</creator><creator>Alpy, Fabien</creator><creator>Bellocq, Jean-Pierre</creator><creator>Neuberger, Karl</creator><creator>Tomasetto, Catherine</creator><creator>Mathelin, Carole</creator><general>De Gruyter</general><general>Walter De Gruyter &amp; Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0434-2895</orcidid><orcidid>https://orcid.org/0000-0002-7680-0210</orcidid><orcidid>https://orcid.org/0000-0002-7593-6378</orcidid><orcidid>https://orcid.org/0000-0002-0526-0720</orcidid><orcidid>https://orcid.org/0000-0002-1811-5848</orcidid></search><sort><creationdate>20190527</creationdate><title>A novel machine learning-derived decision tree including uPA/PAI-1 for breast cancer care</title><author>Reix, Nathalie ; Lodi, Massimo ; Jankowski, Stéphane ; Molière, Sébastien ; Luporsi, Elisabeth ; Leblanc, Suzanne ; Scheer, Louise ; Ibnouhsein, Issam ; Benabu, Julie-Charlotte ; Gabriele, Victor ; Guggiola, Alberto ; Lessinger, Jean-Marc ; Chenard, Marie-Pierre ; Alpy, Fabien ; Bellocq, Jean-Pierre ; Neuberger, Karl ; Tomasetto, Catherine ; Mathelin, Carole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-12a85e80fec2ef602b7f030dd52e3ad9841d2e3e4981cafc57fee57daa39b03f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Artificial intelligence</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - analysis</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - mortality</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Chemotherapy</topic><topic>Decision Trees</topic><topic>Disease-Free Survival</topic><topic>ErbB-2 protein</topic><topic>Estrogen receptors</topic><topic>Estrogens</topic><topic>Female</topic><topic>Humans</topic><topic>Indication</topic><topic>Learning algorithms</topic><topic>Levels</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Middle Aged</topic><topic>Neoplasm Grading</topic><topic>over- and under-treatment</topic><topic>Plasminogen Activator Inhibitor 1 - analysis</topic><topic>Prescriptions</topic><topic>survival</topic><topic>Survival Rate</topic><topic>Tumors</topic><topic>uPA/PAI-1</topic><topic>Urokinase-Type Plasminogen Activator - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reix, Nathalie</creatorcontrib><creatorcontrib>Lodi, Massimo</creatorcontrib><creatorcontrib>Jankowski, Stéphane</creatorcontrib><creatorcontrib>Molière, Sébastien</creatorcontrib><creatorcontrib>Luporsi, Elisabeth</creatorcontrib><creatorcontrib>Leblanc, Suzanne</creatorcontrib><creatorcontrib>Scheer, Louise</creatorcontrib><creatorcontrib>Ibnouhsein, Issam</creatorcontrib><creatorcontrib>Benabu, Julie-Charlotte</creatorcontrib><creatorcontrib>Gabriele, Victor</creatorcontrib><creatorcontrib>Guggiola, Alberto</creatorcontrib><creatorcontrib>Lessinger, Jean-Marc</creatorcontrib><creatorcontrib>Chenard, Marie-Pierre</creatorcontrib><creatorcontrib>Alpy, Fabien</creatorcontrib><creatorcontrib>Bellocq, Jean-Pierre</creatorcontrib><creatorcontrib>Neuberger, Karl</creatorcontrib><creatorcontrib>Tomasetto, Catherine</creatorcontrib><creatorcontrib>Mathelin, Carole</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Clinical chemistry and laboratory medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reix, Nathalie</au><au>Lodi, Massimo</au><au>Jankowski, Stéphane</au><au>Molière, Sébastien</au><au>Luporsi, Elisabeth</au><au>Leblanc, Suzanne</au><au>Scheer, Louise</au><au>Ibnouhsein, Issam</au><au>Benabu, Julie-Charlotte</au><au>Gabriele, Victor</au><au>Guggiola, Alberto</au><au>Lessinger, Jean-Marc</au><au>Chenard, Marie-Pierre</au><au>Alpy, Fabien</au><au>Bellocq, Jean-Pierre</au><au>Neuberger, Karl</au><au>Tomasetto, Catherine</au><au>Mathelin, Carole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel machine learning-derived decision tree including uPA/PAI-1 for breast cancer care</atitle><jtitle>Clinical chemistry and laboratory medicine</jtitle><addtitle>Clin Chem Lab Med</addtitle><date>2019-05-27</date><risdate>2019</risdate><volume>57</volume><issue>6</issue><spage>901</spage><epage>910</epage><pages>901-910</pages><issn>1434-6621</issn><eissn>1437-4331</eissn><abstract>Background uPA and PAI-1 are breast cancer biomarkers that evaluate the benefit of chemotherapy (CT) for HER2-negative, estrogen receptor-positive, low or intermediate grade patients. Our objectives were to observe clinical routine use of uPA/PAI-1 and to build a new therapeutic decision tree integrating uPA/PAI-1. Methods We observed the concordance between CT indications proposed by a canonical decision tree representative of French practices (not including uPA/PAI-1) and actual CT prescriptions decided by a medical board which included uPA/PAI-1. We used a method of machine learning for the analysis of concordant and non-concordant CT prescriptions to generate a novel scheme for CT indications. Results We observed a concordance rate of 71% between indications proposed by the canonical decision tree and actual prescriptions. Discrepancies were due to CT contraindications, high tumor grade and uPA/PAI-1 level. Altogether, uPA/PAI-1 were a decisive factor for the final decision in 17% of cases by avoiding CT prescription in two-thirds of cases and inducing CT in other cases. Remarkably, we noted that in routine practice, elevated uPA/PAI-1 levels seem not to be considered as a sufficient indication for CT for N≤3, Ki 67≤30% tumors, but are considered in association with at least one additional marker such as Ki 67&gt;14%, vascular invasion and ER-H score &lt;150. Conclusions This study highlights that in the routine clinical practice uPA/PAI-1 are never used as the sole indication for CT. Combined with other routinely used biomarkers, uPA/PAI-1 present an added value to orientate the therapeutic choice.</abstract><cop>Germany</cop><pub>De Gruyter</pub><pmid>30838840</pmid><doi>10.1515/cclm-2018-1065</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0434-2895</orcidid><orcidid>https://orcid.org/0000-0002-7680-0210</orcidid><orcidid>https://orcid.org/0000-0002-7593-6378</orcidid><orcidid>https://orcid.org/0000-0002-0526-0720</orcidid><orcidid>https://orcid.org/0000-0002-1811-5848</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1434-6621
ispartof Clinical chemistry and laboratory medicine, 2019-05, Vol.57 (6), p.901-910
issn 1434-6621
1437-4331
language eng
recordid cdi_hal_primary_oai_HAL_hal_03417166v1
source MEDLINE; De Gruyter journals
subjects Adult
Aged
Antineoplastic Agents - therapeutic use
Artificial intelligence
Biomarkers
Biomarkers, Tumor - analysis
Breast cancer
Breast Neoplasms - drug therapy
Breast Neoplasms - mortality
Breast Neoplasms - pathology
Cancer
Chemotherapy
Decision Trees
Disease-Free Survival
ErbB-2 protein
Estrogen receptors
Estrogens
Female
Humans
Indication
Learning algorithms
Levels
Life Sciences
Machine Learning
Middle Aged
Neoplasm Grading
over- and under-treatment
Plasminogen Activator Inhibitor 1 - analysis
Prescriptions
survival
Survival Rate
Tumors
uPA/PAI-1
Urokinase-Type Plasminogen Activator - analysis
title A novel machine learning-derived decision tree including uPA/PAI-1 for breast cancer care
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20machine%20learning-derived%20decision%20tree%20including%20uPA/PAI-1%20for%20breast%20cancer%20care&rft.jtitle=Clinical%20chemistry%20and%20laboratory%20medicine&rft.au=Reix,%20Nathalie&rft.date=2019-05-27&rft.volume=57&rft.issue=6&rft.spage=901&rft.epage=910&rft.pages=901-910&rft.issn=1434-6621&rft.eissn=1437-4331&rft_id=info:doi/10.1515/cclm-2018-1065&rft_dat=%3Cproquest_hal_p%3E2222882387%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222882387&rft_id=info:pmid/30838840&rfr_iscdi=true