A novel machine learning-derived decision tree including uPA/PAI-1 for breast cancer care
Background uPA and PAI-1 are breast cancer biomarkers that evaluate the benefit of chemotherapy (CT) for HER2-negative, estrogen receptor-positive, low or intermediate grade patients. Our objectives were to observe clinical routine use of uPA/PAI-1 and to build a new therapeutic decision tree integr...
Gespeichert in:
Veröffentlicht in: | Clinical chemistry and laboratory medicine 2019-05, Vol.57 (6), p.901-910 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background uPA and PAI-1 are breast cancer biomarkers that evaluate the benefit of chemotherapy (CT) for HER2-negative, estrogen receptor-positive, low or intermediate grade patients. Our objectives were to observe clinical routine use of uPA/PAI-1 and to build a new therapeutic decision tree integrating uPA/PAI-1. Methods We observed the concordance between CT indications proposed by a canonical decision tree representative of French practices (not including uPA/PAI-1) and actual CT prescriptions decided by a medical board which included uPA/PAI-1. We used a method of machine learning for the analysis of concordant and non-concordant CT prescriptions to generate a novel scheme for CT indications. Results We observed a concordance rate of 71% between indications proposed by the canonical decision tree and actual prescriptions. Discrepancies were due to CT contraindications, high tumor grade and uPA/PAI-1 level. Altogether, uPA/PAI-1 were a decisive factor for the final decision in 17% of cases by avoiding CT prescription in two-thirds of cases and inducing CT in other cases. Remarkably, we noted that in routine practice, elevated uPA/PAI-1 levels seem not to be considered as a sufficient indication for CT for N≤3, Ki 67≤30% tumors, but are considered in association with at least one additional marker such as Ki 67>14%, vascular invasion and ER-H score |
---|---|
ISSN: | 1434-6621 1437-4331 |
DOI: | 10.1515/cclm-2018-1065 |