The Thermochemistry of Alkyne Insertion into a Palladacycle Outlines the Solvation Conundrum in DFT
In an effort to determine the thermochemistry of established organometallic transformation, the well documented reaction of alkynes with a palladacycle was investigated by isothermal titration calorimetry (ITC). Although the mechanism of the insertion of unsaturated substrates into the Pd−C bond of...
Gespeichert in:
Veröffentlicht in: | European journal of inorganic chemistry 2021-12, Vol.2021 (45), p.4690-4699 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In an effort to determine the thermochemistry of established organometallic transformation, the well documented reaction of alkynes with a palladacycle was investigated by isothermal titration calorimetry (ITC). Although the mechanism of the insertion of unsaturated substrates into the Pd−C bond of cyclopalladated compounds is known, no information is available so far about their thermochemistry. The enthalpies of the reactions of Ph−C≡C−Ph and MeOC(O)−C≡C(O)COMe with the bisacetonitrilo salt of the N,N‐benzylamine palladacycle were determined by ITC in chlorobenzene after having optimized the conditions to ensure that only the double and a single insertion of alkynes were occurring respectively. The reaction energy profile established by DFT for the double insertion process involving Ph−C≡C−Ph confirmed earlier conclusions on the rate determining character of the first insertion. Further computations of reaction enthalpies reveal significant discrepancies between ITC and DFT‐D/continuum solvation enthalpies, that are suspected to arise from an unexpected explicit noncovalent interaction of PhCl with the components of the reaction.
Enthalpies of reactions of alkynes with a palladacycle determined by isotherm titration calorimetry in chlorobenzene reveal major solvation‐related discrepancies with a standard continuum solvation‐DFT approach. |
---|---|
ISSN: | 1434-1948 1099-0682 |
DOI: | 10.1002/ejic.202100750 |