Control of spin–charge conversion in van der Waals heterostructures

The interconversion between spin and charge degrees of freedom offers incredible potential for spintronic devices, opening routes for spin injection, detection, and manipulation alternative to the use of ferromagnets. The understanding and control of such interconversion mechanisms, which rely on sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APL materials 2021-10, Vol.9 (10), p.100901-100901-20
Hauptverfasser: Galceran, Regina, Tian, Bo, Li, Junzhu, Bonell, Frédéric, Jamet, Matthieu, Vergnaud, Céline, Marty, Alain, García, Jose H., Sierra, Juan F., Costache, Marius V., Roche, Stephan, Valenzuela, Sergio O., Manchon, Aurélien, Zhang, Xixiang, Schwingenschlögl, Udo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interconversion between spin and charge degrees of freedom offers incredible potential for spintronic devices, opening routes for spin injection, detection, and manipulation alternative to the use of ferromagnets. The understanding and control of such interconversion mechanisms, which rely on spin–orbit coupling, is therefore an exciting prospect. The emergence of van der Waals materials possessing large spin–orbit coupling (such as transition metal dichalcogenides or topological insulators) and/or recently discovered van der Waals layered ferromagnets further extends the possibility of spin-to-charge interconversion to ultrathin spintronic devices. Additionally, they offer abundant room for progress in discovering and analyzing novel spin–charge interconversion phenomena. Modifying the properties of van der Waals materials through proximity effects is an added degree of tunability also under exploration. This Perspective discusses the recent advances toward spin-to-charge interconversion in van der Waals materials. It highlights scientific developments which include techniques for large-scale growth, device physics, and theoretical aspects.
ISSN:2166-532X
2166-532X
DOI:10.1063/5.0054865