A general comparison principle for Hamilton Jacobi Bellman equations on stratified domains

This manuscript aims to study finite horizon, first order Hamilton Jacobi Bellman equations on stratified domains. This problem is related to optimal control problems with discontinuous dynamics. We use nonsmooth analysis techniques to derive a strong comparison principle as in the classical theory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2023, Vol.29, p.9
Hauptverfasser: Jerhaoui, Othmane, Zidani, Hasnaa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This manuscript aims to study finite horizon, first order Hamilton Jacobi Bellman equations on stratified domains. This problem is related to optimal control problems with discontinuous dynamics. We use nonsmooth analysis techniques to derive a strong comparison principle as in the classical theory and deduce that the value function is the unique viscosity solution. Furthermore, we prove some stability results of the Hamilton Jacobi Bellman equation. Finally, we establish a general convergence result for monotone numerical schemes in the stratified case.
ISSN:1292-8119
1262-3377
DOI:10.1051/cocv/2022089