Free transport for convex potentials
We construct non-commutative analogs of transport maps among free Gibbs state satisfying a certain convexity condition. Unlike previous constructions, our approach is non-perturbative in nature and thus can be used to construct transport maps between free Gibbs states associated to potentials which...
Gespeichert in:
Veröffentlicht in: | New Zealand journal of mathematics 2021, Vol.52, p.259-359 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 359 |
---|---|
container_issue | |
container_start_page | 259 |
container_title | New Zealand journal of mathematics |
container_volume | 52 |
creator | Dabrowski, Yoann Guionnet, Alice Shlyakhtenko, Dima |
description | We construct non-commutative analogs of transport maps among free Gibbs state satisfying a certain convexity condition. Unlike previous constructions, our approach is non-perturbative in nature and thus can be used to construct transport maps between free Gibbs states associated to potentials which are far from quadratic, i.e., states which are far from the semicircle law. An essential technical ingredient in our approach is the extension of free stochastic analysis to non-commutative spaces of functions based on the Haagerup tensor product. |
doi_str_mv | 10.53733/102 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03400305v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03400305v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c133t-c1bc68881a4e5fb2f65c7ca3d22ef4cf9a087a050c99c22bf53065ad006fa3ea3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYNYsLb9D3voxcPqJJNsssdSrBUWvOh5mU0TXKmbJVmK_nujFfEy7_H4ZhgeY0sOtwo14h0HccHmnOu6lLWRl__8FbtO6Q2gQi35nK130bliijSkMcSp8CEWNgwn91GMYXLD1NMxLdnMZ3GrX12wl93983ZfNk8Pj9tNU1qOOOXZ2coYw0k65TvhK2W1JTwI4by0viYwmkCBrWsrROcVQqXokJ_xhI5wwW7Od1_p2I6xf6f42Qbq2_2mab8zQAmAoE48s-sza2NIKTr_t8Ch_WkhG4FfNMVM6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free transport for convex potentials</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free E- Journals</source><creator>Dabrowski, Yoann ; Guionnet, Alice ; Shlyakhtenko, Dima</creator><creatorcontrib>Dabrowski, Yoann ; Guionnet, Alice ; Shlyakhtenko, Dima</creatorcontrib><description>We construct non-commutative analogs of transport maps among free Gibbs state satisfying a certain convexity condition. Unlike previous constructions, our approach is non-perturbative in nature and thus can be used to construct transport maps between free Gibbs states associated to potentials which are far from quadratic, i.e., states which are far from the semicircle law. An essential technical ingredient in our approach is the extension of free stochastic analysis to non-commutative spaces of functions based on the Haagerup tensor product.</description><identifier>ISSN: 1179-4984</identifier><identifier>ISSN: 1171-6096</identifier><identifier>EISSN: 1179-4984</identifier><identifier>DOI: 10.53733/102</identifier><language>eng</language><publisher>New Zealand Mathematical Society : Dept. of Mathematics, University of Auckland</publisher><subject>Mathematics ; Probability</subject><ispartof>New Zealand journal of mathematics, 2021, Vol.52, p.259-359</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4524-8627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03400305$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dabrowski, Yoann</creatorcontrib><creatorcontrib>Guionnet, Alice</creatorcontrib><creatorcontrib>Shlyakhtenko, Dima</creatorcontrib><title>Free transport for convex potentials</title><title>New Zealand journal of mathematics</title><description>We construct non-commutative analogs of transport maps among free Gibbs state satisfying a certain convexity condition. Unlike previous constructions, our approach is non-perturbative in nature and thus can be used to construct transport maps between free Gibbs states associated to potentials which are far from quadratic, i.e., states which are far from the semicircle law. An essential technical ingredient in our approach is the extension of free stochastic analysis to non-commutative spaces of functions based on the Haagerup tensor product.</description><subject>Mathematics</subject><subject>Probability</subject><issn>1179-4984</issn><issn>1171-6096</issn><issn>1179-4984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLAzEQhYNYsLb9D3voxcPqJJNsssdSrBUWvOh5mU0TXKmbJVmK_nujFfEy7_H4ZhgeY0sOtwo14h0HccHmnOu6lLWRl__8FbtO6Q2gQi35nK130bliijSkMcSp8CEWNgwn91GMYXLD1NMxLdnMZ3GrX12wl93983ZfNk8Pj9tNU1qOOOXZ2coYw0k65TvhK2W1JTwI4by0viYwmkCBrWsrROcVQqXokJ_xhI5wwW7Od1_p2I6xf6f42Qbq2_2mab8zQAmAoE48s-sza2NIKTr_t8Ch_WkhG4FfNMVM6Q</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Dabrowski, Yoann</creator><creator>Guionnet, Alice</creator><creator>Shlyakhtenko, Dima</creator><general>New Zealand Mathematical Society : Dept. of Mathematics, University of Auckland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4524-8627</orcidid></search><sort><creationdate>2021</creationdate><title>Free transport for convex potentials</title><author>Dabrowski, Yoann ; Guionnet, Alice ; Shlyakhtenko, Dima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c133t-c1bc68881a4e5fb2f65c7ca3d22ef4cf9a087a050c99c22bf53065ad006fa3ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dabrowski, Yoann</creatorcontrib><creatorcontrib>Guionnet, Alice</creatorcontrib><creatorcontrib>Shlyakhtenko, Dima</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>New Zealand journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dabrowski, Yoann</au><au>Guionnet, Alice</au><au>Shlyakhtenko, Dima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free transport for convex potentials</atitle><jtitle>New Zealand journal of mathematics</jtitle><date>2021</date><risdate>2021</risdate><volume>52</volume><spage>259</spage><epage>359</epage><pages>259-359</pages><issn>1179-4984</issn><issn>1171-6096</issn><eissn>1179-4984</eissn><abstract>We construct non-commutative analogs of transport maps among free Gibbs state satisfying a certain convexity condition. Unlike previous constructions, our approach is non-perturbative in nature and thus can be used to construct transport maps between free Gibbs states associated to potentials which are far from quadratic, i.e., states which are far from the semicircle law. An essential technical ingredient in our approach is the extension of free stochastic analysis to non-commutative spaces of functions based on the Haagerup tensor product.</abstract><pub>New Zealand Mathematical Society : Dept. of Mathematics, University of Auckland</pub><doi>10.53733/102</doi><tpages>101</tpages><orcidid>https://orcid.org/0000-0003-4524-8627</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1179-4984 |
ispartof | New Zealand journal of mathematics, 2021, Vol.52, p.259-359 |
issn | 1179-4984 1171-6096 1179-4984 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03400305v1 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free E- Journals |
subjects | Mathematics Probability |
title | Free transport for convex potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20transport%20for%20convex%20potentials&rft.jtitle=New%20Zealand%20journal%20of%20mathematics&rft.au=Dabrowski,%20Yoann&rft.date=2021&rft.volume=52&rft.spage=259&rft.epage=359&rft.pages=259-359&rft.issn=1179-4984&rft.eissn=1179-4984&rft_id=info:doi/10.53733/102&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03400305v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |