Free transport for convex potentials

We construct non-commutative analogs of transport maps among free Gibbs state satisfying a certain convexity condition. Unlike previous constructions, our approach is non-perturbative in nature and thus can be used to construct transport maps between free Gibbs states associated to potentials which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New Zealand journal of mathematics 2021, Vol.52, p.259-359
Hauptverfasser: Dabrowski, Yoann, Guionnet, Alice, Shlyakhtenko, Dima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue
container_start_page 259
container_title New Zealand journal of mathematics
container_volume 52
creator Dabrowski, Yoann
Guionnet, Alice
Shlyakhtenko, Dima
description We construct non-commutative analogs of transport maps among free Gibbs state satisfying a certain convexity condition. Unlike previous constructions, our approach is non-perturbative in nature and thus can be used to construct transport maps between free Gibbs states associated to potentials which are far from quadratic, i.e., states which are far from the semicircle law. An essential technical ingredient in our approach is the extension of free stochastic analysis to non-commutative spaces of functions based on the Haagerup tensor product.
doi_str_mv 10.53733/102
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03400305v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03400305v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c133t-c1bc68881a4e5fb2f65c7ca3d22ef4cf9a087a050c99c22bf53065ad006fa3ea3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYNYsLb9D3voxcPqJJNsssdSrBUWvOh5mU0TXKmbJVmK_nujFfEy7_H4ZhgeY0sOtwo14h0HccHmnOu6lLWRl__8FbtO6Q2gQi35nK130bliijSkMcSp8CEWNgwn91GMYXLD1NMxLdnMZ3GrX12wl93983ZfNk8Pj9tNU1qOOOXZ2coYw0k65TvhK2W1JTwI4by0viYwmkCBrWsrROcVQqXokJ_xhI5wwW7Od1_p2I6xf6f42Qbq2_2mab8zQAmAoE48s-sza2NIKTr_t8Ch_WkhG4FfNMVM6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free transport for convex potentials</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free E- Journals</source><creator>Dabrowski, Yoann ; Guionnet, Alice ; Shlyakhtenko, Dima</creator><creatorcontrib>Dabrowski, Yoann ; Guionnet, Alice ; Shlyakhtenko, Dima</creatorcontrib><description>We construct non-commutative analogs of transport maps among free Gibbs state satisfying a certain convexity condition. Unlike previous constructions, our approach is non-perturbative in nature and thus can be used to construct transport maps between free Gibbs states associated to potentials which are far from quadratic, i.e., states which are far from the semicircle law. An essential technical ingredient in our approach is the extension of free stochastic analysis to non-commutative spaces of functions based on the Haagerup tensor product.</description><identifier>ISSN: 1179-4984</identifier><identifier>ISSN: 1171-6096</identifier><identifier>EISSN: 1179-4984</identifier><identifier>DOI: 10.53733/102</identifier><language>eng</language><publisher>New Zealand Mathematical Society : Dept. of Mathematics, University of Auckland</publisher><subject>Mathematics ; Probability</subject><ispartof>New Zealand journal of mathematics, 2021, Vol.52, p.259-359</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4524-8627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03400305$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dabrowski, Yoann</creatorcontrib><creatorcontrib>Guionnet, Alice</creatorcontrib><creatorcontrib>Shlyakhtenko, Dima</creatorcontrib><title>Free transport for convex potentials</title><title>New Zealand journal of mathematics</title><description>We construct non-commutative analogs of transport maps among free Gibbs state satisfying a certain convexity condition. Unlike previous constructions, our approach is non-perturbative in nature and thus can be used to construct transport maps between free Gibbs states associated to potentials which are far from quadratic, i.e., states which are far from the semicircle law. An essential technical ingredient in our approach is the extension of free stochastic analysis to non-commutative spaces of functions based on the Haagerup tensor product.</description><subject>Mathematics</subject><subject>Probability</subject><issn>1179-4984</issn><issn>1171-6096</issn><issn>1179-4984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLAzEQhYNYsLb9D3voxcPqJJNsssdSrBUWvOh5mU0TXKmbJVmK_nujFfEy7_H4ZhgeY0sOtwo14h0HccHmnOu6lLWRl__8FbtO6Q2gQi35nK130bliijSkMcSp8CEWNgwn91GMYXLD1NMxLdnMZ3GrX12wl93983ZfNk8Pj9tNU1qOOOXZ2coYw0k65TvhK2W1JTwI4by0viYwmkCBrWsrROcVQqXokJ_xhI5wwW7Od1_p2I6xf6f42Qbq2_2mab8zQAmAoE48s-sza2NIKTr_t8Ch_WkhG4FfNMVM6Q</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Dabrowski, Yoann</creator><creator>Guionnet, Alice</creator><creator>Shlyakhtenko, Dima</creator><general>New Zealand Mathematical Society : Dept. of Mathematics, University of Auckland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4524-8627</orcidid></search><sort><creationdate>2021</creationdate><title>Free transport for convex potentials</title><author>Dabrowski, Yoann ; Guionnet, Alice ; Shlyakhtenko, Dima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c133t-c1bc68881a4e5fb2f65c7ca3d22ef4cf9a087a050c99c22bf53065ad006fa3ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dabrowski, Yoann</creatorcontrib><creatorcontrib>Guionnet, Alice</creatorcontrib><creatorcontrib>Shlyakhtenko, Dima</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>New Zealand journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dabrowski, Yoann</au><au>Guionnet, Alice</au><au>Shlyakhtenko, Dima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free transport for convex potentials</atitle><jtitle>New Zealand journal of mathematics</jtitle><date>2021</date><risdate>2021</risdate><volume>52</volume><spage>259</spage><epage>359</epage><pages>259-359</pages><issn>1179-4984</issn><issn>1171-6096</issn><eissn>1179-4984</eissn><abstract>We construct non-commutative analogs of transport maps among free Gibbs state satisfying a certain convexity condition. Unlike previous constructions, our approach is non-perturbative in nature and thus can be used to construct transport maps between free Gibbs states associated to potentials which are far from quadratic, i.e., states which are far from the semicircle law. An essential technical ingredient in our approach is the extension of free stochastic analysis to non-commutative spaces of functions based on the Haagerup tensor product.</abstract><pub>New Zealand Mathematical Society : Dept. of Mathematics, University of Auckland</pub><doi>10.53733/102</doi><tpages>101</tpages><orcidid>https://orcid.org/0000-0003-4524-8627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1179-4984
ispartof New Zealand journal of mathematics, 2021, Vol.52, p.259-359
issn 1179-4984
1171-6096
1179-4984
language eng
recordid cdi_hal_primary_oai_HAL_hal_03400305v1
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free E- Journals
subjects Mathematics
Probability
title Free transport for convex potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20transport%20for%20convex%20potentials&rft.jtitle=New%20Zealand%20journal%20of%20mathematics&rft.au=Dabrowski,%20Yoann&rft.date=2021&rft.volume=52&rft.spage=259&rft.epage=359&rft.pages=259-359&rft.issn=1179-4984&rft.eissn=1179-4984&rft_id=info:doi/10.53733/102&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03400305v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true