Free transport for convex potentials

We construct non-commutative analogs of transport maps among free Gibbs state satisfying a certain convexity condition. Unlike previous constructions, our approach is non-perturbative in nature and thus can be used to construct transport maps between free Gibbs states associated to potentials which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New Zealand journal of mathematics 2021, Vol.52, p.259-359
Hauptverfasser: Dabrowski, Yoann, Guionnet, Alice, Shlyakhtenko, Dima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct non-commutative analogs of transport maps among free Gibbs state satisfying a certain convexity condition. Unlike previous constructions, our approach is non-perturbative in nature and thus can be used to construct transport maps between free Gibbs states associated to potentials which are far from quadratic, i.e., states which are far from the semicircle law. An essential technical ingredient in our approach is the extension of free stochastic analysis to non-commutative spaces of functions based on the Haagerup tensor product.
ISSN:1179-4984
1171-6096
1179-4984
DOI:10.53733/102