Decomposing subcubic graphs into claws, paths or triangles

Let S = { K 1 , 3 , K 3 , P 4 } be the set of connected graphs of size 3. We study the problem of partitioning the edge set of a graph G into graphs taken from any nonempty S ′ ⊆ S. The problem is known to be NP‐complete for any possible choice of S ′ in general graphs. In this paper, we assume that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2021-12, Vol.98 (4), p.557-588
Hauptverfasser: Bulteau, Laurent, Fertin, Guillaume, Labarre, Anthony, Rizzi, Romeo, Rusu, Irena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let S = { K 1 , 3 , K 3 , P 4 } be the set of connected graphs of size 3. We study the problem of partitioning the edge set of a graph G into graphs taken from any nonempty S ′ ⊆ S. The problem is known to be NP‐complete for any possible choice of S ′ in general graphs. In this paper, we assume that the input graph is subcubic (i.e., all its vertices have degree at most 3), and study the computational complexity of the problem of partitioning its edge set for any choice of S ′. We identify all polynomial and NP‐complete problems in that setting.
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.22713