A modified LOF-based approach for outlier characterization in IoT
The Internet of Things (IoT) is a growing paradigm that is revolutionary for information and communication technology (ICT) because it gathers numerous application domains by integrating several enabling technologies. Outlier detection is a field of tremendous importance, including in IoT. In previo...
Gespeichert in:
Veröffentlicht in: | Annales des télécommunications 2021-04, Vol.76 (3-4), p.145-153 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Internet of Things (IoT) is a growing paradigm that is revolutionary for information and communication technology (ICT) because it gathers numerous application domains by integrating several enabling technologies. Outlier detection is a field of tremendous importance, including in IoT. In previous works on outlier detection, the proposed methods mainly tackled the efficacy and the efficiency challenges. However, a growing interest in the interpretation of the detected anomalies has been noticed by the research community, and only a few works have contributed in this direction. Furthermore, characterizing anomalous events in IoT-related problems has not been conducted. Hence, in this paper, we introduce our modified Local Outlier Factor (LOF)–based outlier characterization approach and apply it to enhance the IoT security and reliability. Experiments on both synthetic and real-world datasets show the good performance of our solution. |
---|---|
ISSN: | 0003-4347 1958-9395 |
DOI: | 10.1007/s12243-020-00780-5 |