Ballistic Transport and Absolute Continuity of One-Frequency Schrödinger Operators
For the solution u ( t ) to the discrete Schrödinger equation i d d t u n ( t ) = - ( u n + 1 ( t ) + u n - 1 ( t ) ) + V ( θ + n α ) u n ( t ) , n ∈ Z , with α ∈ R \ Q and V ∈ C ω ( T , R ) , we consider the growth rate with t of its diffusion norm ⟨ u ( t ) ⟩ p : = ∑ n ∈ Z ( n p + 1 ) | u n ( t )...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2017-05, Vol.351 (3), p.877-921 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the solution
u
(
t
) to the discrete Schrödinger equation
i
d
d
t
u
n
(
t
)
=
-
(
u
n
+
1
(
t
)
+
u
n
-
1
(
t
)
)
+
V
(
θ
+
n
α
)
u
n
(
t
)
,
n
∈
Z
,
with
α
∈
R
\
Q
and
V
∈
C
ω
(
T
,
R
)
, we consider the growth rate with
t
of its diffusion norm
⟨
u
(
t
)
⟩
p
:
=
∑
n
∈
Z
(
n
p
+
1
)
|
u
n
(
t
)
|
2
1
2
, and the (non-averaged) transport exponents
β
u
+
(
p
)
:
=
lim sup
t
→
∞
2
log
⟨
u
(
t
)
⟩
p
p
log
t
,
β
u
-
(
p
)
:
=
lim inf
t
→
∞
2
log
⟨
u
(
t
)
⟩
p
p
log
t
.
We will show that, if the corresponding Schrödinger operator has purely absolutely continuous spectrum, then
β
u
±
(
p
)
=
1
, provided that
u
(0) is well localized. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-017-2848-3 |