A NEW COARSELY RIGID CLASS OF BANACH SPACES
We prove that the class of reflexive asymptotic- $c_{0}$ Banach spaces is coarsely rigid, meaning that if a Banach space $X$ coarsely embeds into a reflexive asymptotic- $c_{0}$ space $Y$ , then $X$ is also reflexive and asymptotic- $c_{0}$ . In order to achieve this result, we provide a purely metr...
Gespeichert in:
Veröffentlicht in: | Journal of the Institute of Mathematics of Jussieu 2021-09, Vol.20 (5), p.1729-1747 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the class of reflexive asymptotic-
$c_{0}$
Banach spaces is coarsely rigid, meaning that if a Banach space
$X$
coarsely embeds into a reflexive asymptotic-
$c_{0}$
space
$Y$
, then
$X$
is also reflexive and asymptotic-
$c_{0}$
. In order to achieve this result, we provide a purely metric characterization of this class of Banach spaces. This metric characterization takes the form of a concentration inequality for Lipschitz maps on the Hamming graphs, which is rigid under coarse embeddings. Using an example of a quasi-reflexive asymptotic-
$c_{0}$
space, we show that this concentration inequality is not equivalent to the non-equi-coarse embeddability of the Hamming graphs. |
---|---|
ISSN: | 1474-7480 1475-3030 |
DOI: | 10.1017/S1474748019000732 |