A NEW COARSELY RIGID CLASS OF BANACH SPACES

We prove that the class of reflexive asymptotic- $c_{0}$ Banach spaces is coarsely rigid, meaning that if a Banach space $X$ coarsely embeds into a reflexive asymptotic- $c_{0}$ space $Y$ , then $X$ is also reflexive and asymptotic- $c_{0}$ . In order to achieve this result, we provide a purely metr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Institute of Mathematics of Jussieu 2021-09, Vol.20 (5), p.1729-1747
Hauptverfasser: Baudier, F., Lancien, G., Motakis, P., Schlumprecht, Th
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the class of reflexive asymptotic- $c_{0}$ Banach spaces is coarsely rigid, meaning that if a Banach space $X$ coarsely embeds into a reflexive asymptotic- $c_{0}$ space $Y$ , then $X$ is also reflexive and asymptotic- $c_{0}$ . In order to achieve this result, we provide a purely metric characterization of this class of Banach spaces. This metric characterization takes the form of a concentration inequality for Lipschitz maps on the Hamming graphs, which is rigid under coarse embeddings. Using an example of a quasi-reflexive asymptotic- $c_{0}$ space, we show that this concentration inequality is not equivalent to the non-equi-coarse embeddability of the Hamming graphs.
ISSN:1474-7480
1475-3030
DOI:10.1017/S1474748019000732