Photoelectrochemical Tandem Cells for Solar Water Splitting

In order to be economically competitive with simple “brute force” (i.e., PV + electrolyzer) strategies or the production of promising solar fuels, like H2, from fossil fuels, a practical photoelectrochemical device must optimize cost, longevity, and performance. A promising approach that meets these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2013-09, Vol.117 (35), p.17879-17893
Hauptverfasser: Prévot, Mathieu S, Sivula, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to be economically competitive with simple “brute force” (i.e., PV + electrolyzer) strategies or the production of promising solar fuels, like H2, from fossil fuels, a practical photoelectrochemical device must optimize cost, longevity, and performance. A promising approach that meets these requirements is the combination of stable and inexpensive oxide semiconductor electrodes in a tandem photoelectrochemical device. In this article, we give an overview of the field including an examination of the potential solar-to-fuel conversion efficiency expected in a device with realistic losses. We next discuss recent advances with increasing the performance of promising semiconductor electrode materials and highlight how these advances have led to state-of-the-art solar-to-chemical efficiencies in the 2–3% range in real devices. Challenges for further optimization are further outlined.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp405291g