Artificial intelligence to predict clinical disability in patients with multiple sclerosis using FLAIR MRI

•Artificial intelligence enables predicting two-year expanded disability status scale (EDSS) in patients with multiple sclerosis with a mean square error of 3 and mean EDSS error of 1.7.•Best predictor of expanded disability status scale is achieved by combining deep learning, random forest and mani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diagnostic and interventional imaging 2020-12, Vol.101 (12), p.795-802
Hauptverfasser: Roca, P., Attye, A., Colas, L., Tucholka, A., Rubini, P., Cackowski, S., Ding, J., Budzik, J.-F., Renard, F., Doyle, S., Barbier, E.L., Casey, R., Vukusic, S., Lassau, N., Verclytte, S., Cotton, F., Brochet, B., De Sèze, J., Douek, P., Guillemin, F., Laplaud, D., Lebrun-Frenay, C., Mansuy, L., Moreau, T., Olaiz, J., Pelletier, J., Rigaud-Bully, C., Stankoff, B., Marignier, R., Debouverie, M., Ciron, J., Ruet, A., Collongues, N., Lubetzki, C., Vermersch, P., Labauge, P., Defer, G., Cohen, M., Fromont, A., Wiertlewsky, S., Berger, E., Clavelou, P., Audoin, B., Giannesini, C., Gout, O., Thouvenot, E., Heinzlef, O., Al-Khedr, A., Bourre, B., Casez, O., Cabre, P., Montcuquet, A., Faure, J., Maurousset, A., Patry, I., Pottier, C., Maubeuge, N., Labeyrie, C., Nifle, C., Anxionnat, R., Bannier, E., Barillot, C., Ben Salem, D., Boncoeur-Martel, M.-P., Bonneville, F., Boutet, C., Brisset, J.-C., Cervenanski, F., Claise, B., Commowick, O., Constans, J.-M., Dardel, P., Desal, H., Durand-Dubief, F., Ferre, J.-C., Gerardin, E., Glattard, T., Grenier, T., Guillevin, R., Guttmann, C., Krainik, A., Kremer, S., Lion, S., Menjot de Champfleur, N., Outteryck, O., Pyatigorskaya, N., Pruvo, J.-P., Rabaste, S., Ranjeva, J.-P., Roch, J.-A., Sadik, J.C., Sappey-Marinier, D., Savatovsky, J., Tanguy, J.-Y., Tourbah, A., Tourdias, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Artificial intelligence enables predicting two-year expanded disability status scale (EDSS) in patients with multiple sclerosis with a mean square error of 3 and mean EDSS error of 1.7.•Best predictor of expanded disability status scale is achieved by combining deep learning, random forest and manifold learning predictors trained using the location of lesion load with respect to white matter tracts.•If confirmed in large external, validation cohort, artificial intelligence has the potential for evaluating medical treatment in patients with multiple sclerosis. The purpose of this study was to create an algorithm that combines multiple machine-learning techniques to predict the expanded disability status scale (EDSS) score of patients with multiple sclerosis at two years solely based on age, sex and fluid attenuated inversion recovery (FLAIR) MRI data. Our algorithm combined several complementary predictors: a pure deep learning predictor based on a convolutional neural network (CNN) that learns from the images, as well as classical machine-learning predictors based on random forest regressors and manifold learning trained using the location of lesion load with respect to white matter tracts. The aggregation of the predictors was done through a weighted average taking into account prediction errors for different EDSS ranges. The training dataset consisted of 971 multiple sclerosis patients from the “Observatoire français de la sclérose en plaques” (OFSEP) cohort with initial FLAIR MRI and corresponding EDSS score at two years. A test dataset (475 subjects) was provided without an EDSS score. Ten percent of the training dataset was used for validation. Our algorithm predicted EDSS score in patients with multiple sclerosis and achieved a MSE=2.2 with the validation dataset and a MSE=3 (mean EDSS error=1.7) with the test dataset. Our method predicts two-year clinical disability in patients with multiple sclerosis with a mean EDSS score error of 1.7, using FLAIR sequence and basic patient demographics. This supports the use of our model to predict EDSS score progression. These promising results should be further validated on an external validation cohort.
ISSN:2211-5684
2211-5684
DOI:10.1016/j.diii.2020.05.009