Implantation of Nitrogen Atoms in 4H-SiC Epitaxial Layers: A Comparison between Standard and Plasma Immersion Processes

This paper focuses on the formation of thin n+p junctions in p-type Silicon Carbide (SiC) epitaxial layers using two kinds of Nitrogen implantations. The standard beam ion implantations and PULSIONTM processes were performed at two distinct energies (700 eV and 7 keV), and the subsequent annealing w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials research 2011-08, Vol.324, p.265-268
Hauptverfasser: Biondo, Stéphane, Kazan, Michel, Duchaine, Julian, Torregrosa, Frank, Courtois, Blandine, Daineche, Rachid, Milesi, Frédéric, Ottaviani, Laurent, Palais, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the formation of thin n+p junctions in p-type Silicon Carbide (SiC) epitaxial layers using two kinds of Nitrogen implantations. The standard beam ion implantations and PULSIONTM processes were performed at two distinct energies (700 eV and 7 keV), and the subsequent annealing was held at 1600°C in a resistive furnace specifically adapted to SiC material. No measurable electrical activity was obtained for both implantations performed at 700 eV, due to some outdiffusion of N dopants during the annealing despite a low surface roughness (rms ~ 1.4 nm) and no residual damage detected by RBS/C. A higher sheet resistance was measured in plasma-implanted samples at 7 keV (in comparison with beam-line implanted samples), which is partly related to N outdiffusion. The profiles of N atoms beam-implanted at 7 keV are not affected by the annealing. The corresponding electrical activation is fully completed.
ISSN:1022-6680
1662-8985
1662-8985
DOI:10.4028/www.scientific.net/AMR.324.265