Numerical analysis of a Reynolds Stress Model for turbulent mixing: the one-dimensional case

A mixed hyperbolic-parabolic, non conservative, Reynolds Stress Model (RSM), is studied. It is based on an underlying set of Langevin equations, and allows to describe turbulent mixing, including transient demixing effects as well as incomplete mixing. Its mathematical structure is analysed, and spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2021-09, Vol.55 (5), p.1699-1740
Hauptverfasser: Blanc, Xavier, Colavolpe, Charles, Duclous, Roland, Griffond, Jérôme, Soulard, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mixed hyperbolic-parabolic, non conservative, Reynolds Stress Model (RSM), is studied. It is based on an underlying set of Langevin equations, and allows to describe turbulent mixing, including transient demixing effects as well as incomplete mixing. Its mathematical structure is analysed, and specific regimes, related to acoustic-like, Riemann-type, or self-similar solutions, are identified. A second-order accurate numerical scheme is proposed in arbitrary curvilinear geometry. Its accuracy and convergence behaviour are tested by comparison with analytical solutions in the different regimes. The numerical scheme can be generalized to multi-dimensional configurations, with potentially cylindrical symmetry, on unstructured meshes.
ISSN:0764-583X
1290-3841
DOI:10.1051/m2an/2021035