Water-biomolecule clusters studied by photoemission spectroscopy and multilevel atomistic simulations: hydration or solvation?
The properties of mixed water-uracil nanoaggregates have been probed by core electron-photoemission measurements to investigate supramolecular assembly in the gas phase driven by weak interactions. The interpretation of the measurements has been assisted by multilevel atomistic simulations, based on...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2021-07, Vol.23 (28), p.1549-1558 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The properties of mixed water-uracil nanoaggregates have been probed by core electron-photoemission measurements to investigate supramolecular assembly in the gas phase driven by weak interactions. The interpretation of the measurements has been assisted by multilevel atomistic simulations, based on semi-empirical tight-binding and DFT-based methods. Our protocol established a positive-feedback loop between experimental and computational techniques, which has enabled a sound and detailed atomistic description of such complex heterogeneous molecular aggregates. Among biomolecules, uracil offers interesting and generalized skeletal features; its structure encompasses an alternation of hydrophilic H-bond donor and acceptor sites and hydrophobic moieties, typical in biomolecular systems, that induces a supramolecular core-shell-like organization of the mixed clusters with a water core and an uracil shell. This structure is far from typical models of both solid-state hydration, with water molecules in defined positions, or liquid solvation, where disconnected uracil molecules are completely surrounded by water.
The self-organization patterns unravelled for the water-uracil clusters may disclose new routes for controlling the delivery of precise amount of molecular blends via the insertion in a controlled environment, preserving their size and composition. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d1cp02031e |