Chemical Modifications Induced by Phthalic Anhydride, a Respiratory Sensitizer, in Reconstructed Human Epidermis: A Combined HRMAS NMR and LC-MS/MS Proteomic Approach

Chemical skin and respiratory allergies are becoming a major health problem. To date our knowledge on the process of protein haptenation is still limited and mainly derived from studies performed in solution using model nucleophiles. In order to better understand chemical interactions between chemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical research in toxicology 2021-09, Vol.34 (9), p.2087-2099
Hauptverfasser: Khong, Minh-Thuong, Berl, Valérie, Kuhn, Lauriane, Hammann, Philippe, Lepoittevin, Jean-Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical skin and respiratory allergies are becoming a major health problem. To date our knowledge on the process of protein haptenation is still limited and mainly derived from studies performed in solution using model nucleophiles. In order to better understand chemical interactions between chemical allergens and the skin, we have investigated the reactivity of phthalic anhydride 1 (PA), a chemical respiratory sensitizer, toward reconstructed human epidermis (RHE). This study was performed using a new approach combining HRMAS NMR to investigate the in situ chemical reactivity and LC-MS/MS to identify modified epidermal proteins. In RHE, the reaction of PA appeared to be quite fast and the major product formed was phthalic acid. Two amide type adducts on lysine residues were observed and after 8h of incubation, we also observed the formation of an imide type cyclized adducts with lysine. In parallel, RHE samples topically exposed to phthalic anhydride (13C)-1 were analyzed using the shotgun proteomics method. Thus, 948 different proteins were extracted and identified, 135 of which being modified by PA, i.e., 14.2% of the extracted proteome. A total of 211 amino acids were modified by PA and validated by fragmentation spectra. We thus identified 154 modified lysines, 22 modified histidines, 30 modified tyrosines, and 5 modified arginines. The rate of modified residues, as a proportion of the total number of modifiable nucleophilic residues in RHE, was rather low (1%). At the protein level, modified proteins were mainly type I and type II keratins and other proteins which are abundant in the epidermis such as protein S100A, Caspase 14, annexin A2, serpin B3, fatty-acid binding protein 5, histone H2, H3, H4, etc. However, the most modified protein, mainly on histidine residues, was filaggrin, a protein that is of low abundance (0.0266 mol %) and rich in histidine.
ISSN:0893-228X
1520-5010
DOI:10.1021/acs.chemrestox.1c00172