Cryogel-Integrated Biochip for Liver Tissue Engineering
Microfluidic systems and polymer hydrogels have been widely developed for tissue engineering. Yet, only a few tools combining both approaches, especially for in vitro liver models, are being explored. In this study, an alginate-based cryogel-integrated biochip was engineered for dynamic hepatoma cel...
Gespeichert in:
Veröffentlicht in: | ACS applied bio materials 2021-07, Vol.4 (7), p.5617-5626 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microfluidic systems and polymer hydrogels have been widely developed for tissue engineering. Yet, only a few tools combining both approaches, especially for in vitro liver models, are being explored. In this study, an alginate-based cryogel-integrated biochip was engineered for dynamic hepatoma cell line culture in three dimensions (3D). The alginate cryogel was covalently cross-linked in the biochip at subzero temperatures (T < 0 °C) to create a scaffold with high mechanical stability and an interconnected macroporous network. By varying the alginate concentration and the cross-linker ratio, Young’s modulus of the cryogel can be fine-tuned between 1.5 and 29 kPa, corresponding to the range of stiffness of the different physiological states of the liver. We demonstrated that HepG2/C3A cells can be cultured and maintained as viable under dynamic conditions in this device up to 6 days. Albumin synthesis and glucose consumption increased over the cell culture days. Moreover, a 3D cell structure was observed across the entire height of the biochip, which was preserved following alginate lyase treatment to remove the cryogel-based scaffold. In summary, these results represent a proof of concept of an interesting cell culture technology that should be further investigated to engineer healthy and cirrhotic liver models. |
---|---|
ISSN: | 2576-6422 2576-6422 |
DOI: | 10.1021/acsabm.1c00425 |