Cryogel-Integrated Biochip for Liver Tissue Engineering

Microfluidic systems and polymer hydrogels have been widely developed for tissue engineering. Yet, only a few tools combining both approaches, especially for in vitro liver models, are being explored. In this study, an alginate-based cryogel-integrated biochip was engineered for dynamic hepatoma cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied bio materials 2021-07, Vol.4 (7), p.5617-5626
Hauptverfasser: Boulais, Lilandra, Jellali, Rachid, Pereira, Ulysse, Leclerc, Eric, Bencherif, Sidi A, Legallais, Cécile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microfluidic systems and polymer hydrogels have been widely developed for tissue engineering. Yet, only a few tools combining both approaches, especially for in vitro liver models, are being explored. In this study, an alginate-based cryogel-integrated biochip was engineered for dynamic hepatoma cell line culture in three dimensions (3D). The alginate cryogel was covalently cross-linked in the biochip at subzero temperatures (T < 0 °C) to create a scaffold with high mechanical stability and an interconnected macroporous network. By varying the alginate concentration and the cross-linker ratio, Young’s modulus of the cryogel can be fine-tuned between 1.5 and 29 kPa, corresponding to the range of stiffness of the different physiological states of the liver. We demonstrated that HepG2/C3A cells can be cultured and maintained as viable under dynamic conditions in this device up to 6 days. Albumin synthesis and glucose consumption increased over the cell culture days. Moreover, a 3D cell structure was observed across the entire height of the biochip, which was preserved following alginate lyase treatment to remove the cryogel-based scaffold. In summary, these results represent a proof of concept of an interesting cell culture technology that should be further investigated to engineer healthy and cirrhotic liver models.
ISSN:2576-6422
2576-6422
DOI:10.1021/acsabm.1c00425