NONPARAMETRIC BAYESIAN ESTIMATION FOR MULTIVARIATE HAWKES PROCESSES
This paper studies nonparametric estimation of parameters of multivariate Hawkes processes. We consider the Bayesian setting and derive posterior concentration rates. First, rates are derived for L1-metrics for stochastic intensities of the Hawkes process. We then deduce rates for the L1-norm of int...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 2020-10, Vol.48 (5), p.2698-2727 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies nonparametric estimation of parameters of multivariate Hawkes processes. We consider the Bayesian setting and derive posterior concentration rates. First, rates are derived for L1-metrics for stochastic intensities of the Hawkes process. We then deduce rates for the L1-norm of interactions functions of the process. Our results are exemplified by using priors based on piecewise constant functions, with regular or random partitions and priors based on mixtures of Betas distributions. We also present a simulation study to illustrate our results and to study empirically the inference on functional connectivity graphs of neurons |
---|---|
ISSN: | 0090-5364 2168-8966 |
DOI: | 10.1214/19-AOS1903 |