NONPARAMETRIC BAYESIAN ESTIMATION FOR MULTIVARIATE HAWKES PROCESSES

This paper studies nonparametric estimation of parameters of multivariate Hawkes processes. We consider the Bayesian setting and derive posterior concentration rates. First, rates are derived for L1-metrics for stochastic intensities of the Hawkes process. We then deduce rates for the L1-norm of int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2020-10, Vol.48 (5), p.2698-2727
Hauptverfasser: Donnet, Sophie, Rivoirard, Vincent, Rousseau, Judith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies nonparametric estimation of parameters of multivariate Hawkes processes. We consider the Bayesian setting and derive posterior concentration rates. First, rates are derived for L1-metrics for stochastic intensities of the Hawkes process. We then deduce rates for the L1-norm of interactions functions of the process. Our results are exemplified by using priors based on piecewise constant functions, with regular or random partitions and priors based on mixtures of Betas distributions. We also present a simulation study to illustrate our results and to study empirically the inference on functional connectivity graphs of neurons
ISSN:0090-5364
2168-8966
DOI:10.1214/19-AOS1903