Inhibition of mitochondrial permeability transition to prevent the post-cardiac arrest syndrome: a pre-clinical study

Resuscitated cardiac arrest (CA), leading to harmful cardiovascular dysfunction and multiple organ failure, includes a whole-body hypoxia-reoxygenation phenomenon. Opening of the mitochondrial permeability transition pore (mPTP) appears to be a pivotal event in ischaemia-reperfusion injury. We hypot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European heart journal 2011-01, Vol.32 (2), p.226-235
Hauptverfasser: COUR, Martin, LOUFOUAT, Joseph, PAILLARD, Mélanie, AUGEUL, Lionel, GOUDABLE, Joëlle, OVIZE, Michel, ARGAUD, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resuscitated cardiac arrest (CA), leading to harmful cardiovascular dysfunction and multiple organ failure, includes a whole-body hypoxia-reoxygenation phenomenon. Opening of the mitochondrial permeability transition pore (mPTP) appears to be a pivotal event in ischaemia-reperfusion injury. We hypothesized that pharmacological inhibition of mPTP opening may prevent the post-CA syndrome. Anaesthetized New Zealand White rabbits underwent a 15 min primary asphyxial CA and 120 min of reperfusion following resuscitation. At reflow, animals received an intravenous bolus of either cyclosporine A (CsA, 5 mg/kg) or NIM 811 (2.5 mg/kg), two potent inhibitors of mPTP opening, or the CsA vehicle (control). Short-term survival, haemodynamics, regional (sonomicrometry), and global cardiac function (dP/dt and aortic flow) were assessed. We measured markers of cellular injuries and/or organ failure, including troponin Ic release, lacticodehydrogenase, lactate, creatinine, and alanine aminotransferase. Cyclosporine A and NIM 811 significantly improved short-term survival, post-resuscitation cardiac function, as well as liver and kidney failure (P < 0.05). CsA and NIM 811 both attenuated in vitro mPTP opening (calcium retention capacity by spectrofluorimetry) and restored oxidative phosphorylation when compared with controls (P < 0.05). These data suggest that pharmacological inhibition of mPTP opening, added to basic life support, attenuates the post-CA syndrome and improves short-term outcomes in the rabbit model.
ISSN:0195-668X
1522-9645
DOI:10.1093/eurheartj/ehq112