Active noise-driven particles under space-dependent friction in one dimension

We study a Langevin equation describing the stochastic motion of a particle in one dimension with coordinate x, which is simultaneously exposed to a space-dependent friction coefficient γ(x), a confining potential U (x) and non-equilibrium (i.e., active) noise. Specifically, we consider frictions γ(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2021-05, Vol.103 (5), p.052602-052602, Article 052602
Hauptverfasser: Breoni, D., Löwen, H., Blossey, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a Langevin equation describing the stochastic motion of a particle in one dimension with coordinate x, which is simultaneously exposed to a space-dependent friction coefficient γ(x), a confining potential U (x) and non-equilibrium (i.e., active) noise. Specifically, we consider frictions γ(x) = γ0 + γ1|x| p and potentials U (x) ∝ |x| n with exponents p = 1, 2 and n = 0, 1, 2. We provide analytical and numerical results for the particle dynamics for short times and the stationary probability density functions (PDFs) for long times. The short-time behaviour displays diffusive and ballistic regimes while the stationary PDFs display unique characteristic features depending on the exponent values (p, n). The PDFs interpolate between Laplacian, Gaussian and bimodal distributions, whereby a change between these different behaviours can be achieved by a tuning of the friction strengths ratio γ0/γ1. Our model is relevant for molecular motors moving on a one-dimensional track and can also be realized for confined self-propelled colloidal particles.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.103.052602