Ultra-High Performance and Low-Cost Architecture of Discrete Wavelet Transforms
This work targets the challenging issue to produce high throughput and low-cost configurable architecture of Discrete wavelet transforms (DWT). More specifically, it proposes a new hardware architecture of the first and second generation of DWT using a modified multi-resolution tree. This approach i...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work targets the challenging issue to produce high throughput and low-cost configurable architecture of Discrete wavelet transforms (DWT). More specifically, it proposes a new hardware architecture of the first and second generation of DWT using a modified multi-resolution tree. This approach is based on serializations and interleaving of data between different stages. The designed architecture is massively parallelized and sharing hardware between low-pass and high-pass filters in the wavelet transformation algorithm. Consequently, to process data in high speed and decrease hardware usage. The different steps of the post/pre-synthesis configurable algorithm are detailed in this paper. A modulization in VHDL at RTL level and implementation of the designed architecture on FPGA technology in a NexysVideo board (Artix 7 FPGA) are done in this work, where the performance, the configurability and the generic of our architecture are highly enhanced. The implementation results indicate that our proposed architectures provide a very high-speed data processing with low needed resources. As an example, with the parameters depth order equal 2, filter order equal 2, order quantization equal 5 and a parallel degree P = 16, we reach a bit rate around 3160 Mega samples per second with low used of logic elements (≈400) and logic registers (≈700). |
---|---|
DOI: | 10.5772/intechopen.94858 |