Low Mach Number Limit for the Degenerate Navier–Stokes Equations in Presence of Strong Stratification
In this paper, we investigate the low Mach and low Froude numbers limit for the compressible Navier–Stokes equations with degenerate, density-dependent, viscosity coefficient, in the strong stratification regime. We consider the case of a general pressure law with singular component close to vacuum,...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2023-06, Vol.400 (3), p.1463-1506 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate the low Mach and low Froude numbers limit for the compressible Navier–Stokes equations with degenerate, density-dependent, viscosity coefficient, in the strong stratification regime. We consider the case of a general pressure law with singular component close to vacuum, and general ill-prepared initial data. We perform our study in the three-dimensional periodic domain. We rigorously justify the convergence to the generalised anelastic approximation, which is used extensively to model atmospheric flows. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-022-04624-2 |