Dimensioning an FPGA for Real-Time Implementation of State of the Art Neural Network-Based HPA Predistorter
Orthogonal Frequency Division Multiplexing (OFDM) is one of the key modulations for current and novel broadband communications standards. For example, Multi-band Orthogonal Frequency Division Multiplexing (MB-OFDM) is an excellent choice for the ECMA-368 Ultra Wideband (UWB) wireless communication s...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-07, Vol.10 (13), p.1538 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Orthogonal Frequency Division Multiplexing (OFDM) is one of the key modulations for current and novel broadband communications standards. For example, Multi-band Orthogonal Frequency Division Multiplexing (MB-OFDM) is an excellent choice for the ECMA-368 Ultra Wideband (UWB) wireless communication standard. Nevertheless, the high Peak to Average Power Ratio (PAPR) of MB-OFDM UWB signals reduces the power efficiency of the key element in mobile devices, the High Power Amplifier (HPA), due to non-linear distortion, known as the non-linear saturation of the HPA. In order to deal with this limiting problem, a new and efficient pre-distorter scheme using a Neural Networks (NN) is proposed and also implemented on Field Programmable Gate Array (FPGA). This solution based on the pre-distortion concept of HPA non-linearities offers a good trade-off between complexity and performance. Some tests and validation have been conducted on the two types of HPA: Travelling Wave Tube Amplifiers (TWTA) and Solid State Power Amplifiers (SSPA). The results show that the proposed pre-distorter design presents low complexity and low error rate. Indeed, the implemented architecture uses 10% of DSP (Digital Signal Processing) blocks and 1% of LUTs (Look up Table) in case of SSPA, whereas it only uses 1% of LUTs in case of TWTA. In addition, it allows us to conclude that advanced machine learning techniques can be efficiently implemented in hardware with the adequate design. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics10131538 |