Fixed-distance multipoint formulas for the scattering amplitude from phaseless measurements

We give new formulas for finding the complex (phased) scattering amplitude at fixed frequency and angles from absolute values of the scattering wave function at several points x 1 , …, x m . In dimension d ⩾ 2, for m > 2, we significantly improve previous results in the following two respects. Fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2022-02, Vol.38 (2), p.25012
Hauptverfasser: Novikov, R G, Sivkin, V N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give new formulas for finding the complex (phased) scattering amplitude at fixed frequency and angles from absolute values of the scattering wave function at several points x 1 , …, x m . In dimension d ⩾ 2, for m > 2, we significantly improve previous results in the following two respects. First, geometrical constraints on the points needed in previous results are significantly simplified. Essentially, the measurement points x j are assumed to be on a ray from the origin with fixed distance τ = | x j +1 − x j |, and high order convergence (linearly related to m ) is achieved as the points move to infinity with fixed τ . Second, our new asymptotic reconstruction formulas are significantly simpler than previous ones. In particular, we continue studies going back to Novikov (2015 Bull. Sci. Math. 139 923–936).
ISSN:0266-5611
1361-6420
DOI:10.1088/1361-6420/ac44db