A robust nonlinear tracking MPC using qLPV embedding and zonotopic uncertainty propagation
In this paper, we propose a novel Nonlinear Model Predictive Control (NMPC) framework for tracking for piece-wise constant reference signals. The main novelty is the use of quasi-Linear Parameter Varying (qLPV) embeddings in order to describe the nonlinear dynamics. Furthermore, these embeddings are...
Gespeichert in:
Veröffentlicht in: | Journal of the Franklin Institute 2024-04, Vol.361 (6), p.106713, Article 106713 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 106713 |
container_title | Journal of the Franklin Institute |
container_volume | 361 |
creator | Morato, Marcelo M. Cunha, Victor M. Santos, Tito L.M. Normey-Rico, Julio E. Sename, Olivier |
description | In this paper, we propose a novel Nonlinear Model Predictive Control (NMPC) framework for tracking for piece-wise constant reference signals. The main novelty is the use of quasi-Linear Parameter Varying (qLPV) embeddings in order to describe the nonlinear dynamics. Furthermore, these embeddings are exploited by an extrapolation mechanism, which provides the future behaviour of the scheduling parameters with bounded estimation error. Therefore, the resulting NMPC becomes computationally efficient (comparable to a Quadratic Programming algorithm), since, at each sampling period, the predictions are linear. Benefiting from artificial target variables, the method is also able to avoid feasibility losses due to large set-point variations. Robust constraint satisfaction, closed-loop stability, and recursive feasibility certificates are provided, thanks to uncertainty propagation zonotopes and parameter-dependent terminal ingredients. A benchmark example is used to illustrate the effectiveness of the method, which is compared to state-of-the-art techniques. |
doi_str_mv | 10.1016/j.jfranklin.2024.106713 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03262465v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003224001340</els_id><sourcerecordid>oai_HAL_hal_03262465v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-36caf1f82bcf66921490c0df8b50e94585e3ce4ccc31cfbaf7c3cac81f28de1f3</originalsourceid><addsrcrecordid>eNqFUD1PwzAUtBBIlMJvwCtDij_yOUYVUKQgOgADi-W82MVpawcnrVR-PY6KujK9d6e7k-4QuqVkRglN79tZq720642xM0ZYHNg0o_wMTWieFRFLC36OJiRII0I4u0RXfd8GmFFCJuizxN7Vu37A1tkQoaTHg5ewNnaFX5ZzvOvH77tafmC1rVXTjFDaBv846wbXGcA7C8oP0tjhgDvvOrmSg3H2Gl1ouenVzd-dovfHh7f5Iqpen57nZRUBK5Ih4ilITXXOatBpWjAaFwRIo_M6IaqIkzxRHFQMAJyCrqXOgIOEnGqWN4pqPkV3x9wvuRGdN1vpD8JJIxZlJUYutE5ZnCZ7GrTZUQve9b1X-mSgRIxzilac5hTjnOI4Z3CWR6cKVfZGedGDUaF5Y7yCQTTO_JvxC-C4hDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A robust nonlinear tracking MPC using qLPV embedding and zonotopic uncertainty propagation</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Morato, Marcelo M. ; Cunha, Victor M. ; Santos, Tito L.M. ; Normey-Rico, Julio E. ; Sename, Olivier</creator><creatorcontrib>Morato, Marcelo M. ; Cunha, Victor M. ; Santos, Tito L.M. ; Normey-Rico, Julio E. ; Sename, Olivier</creatorcontrib><description>In this paper, we propose a novel Nonlinear Model Predictive Control (NMPC) framework for tracking for piece-wise constant reference signals. The main novelty is the use of quasi-Linear Parameter Varying (qLPV) embeddings in order to describe the nonlinear dynamics. Furthermore, these embeddings are exploited by an extrapolation mechanism, which provides the future behaviour of the scheduling parameters with bounded estimation error. Therefore, the resulting NMPC becomes computationally efficient (comparable to a Quadratic Programming algorithm), since, at each sampling period, the predictions are linear. Benefiting from artificial target variables, the method is also able to avoid feasibility losses due to large set-point variations. Robust constraint satisfaction, closed-loop stability, and recursive feasibility certificates are provided, thanks to uncertainty propagation zonotopes and parameter-dependent terminal ingredients. A benchmark example is used to illustrate the effectiveness of the method, which is compared to state-of-the-art techniques.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>DOI: 10.1016/j.jfranklin.2024.106713</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Automatic ; Engineering Sciences ; Linear parameter varying systems ; Model predictive control ; Nonlinear systems ; Tracking ; Zonotopes</subject><ispartof>Journal of the Franklin Institute, 2024-04, Vol.361 (6), p.106713, Article 106713</ispartof><rights>2024 The Franklin Institute</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-36caf1f82bcf66921490c0df8b50e94585e3ce4ccc31cfbaf7c3cac81f28de1f3</cites><orcidid>0000-0002-7137-0522 ; 0000-0001-6338-5073 ; 0000-0002-6510-9803 ; 0000-0001-9595-9000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2024.106713$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03262465$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morato, Marcelo M.</creatorcontrib><creatorcontrib>Cunha, Victor M.</creatorcontrib><creatorcontrib>Santos, Tito L.M.</creatorcontrib><creatorcontrib>Normey-Rico, Julio E.</creatorcontrib><creatorcontrib>Sename, Olivier</creatorcontrib><title>A robust nonlinear tracking MPC using qLPV embedding and zonotopic uncertainty propagation</title><title>Journal of the Franklin Institute</title><description>In this paper, we propose a novel Nonlinear Model Predictive Control (NMPC) framework for tracking for piece-wise constant reference signals. The main novelty is the use of quasi-Linear Parameter Varying (qLPV) embeddings in order to describe the nonlinear dynamics. Furthermore, these embeddings are exploited by an extrapolation mechanism, which provides the future behaviour of the scheduling parameters with bounded estimation error. Therefore, the resulting NMPC becomes computationally efficient (comparable to a Quadratic Programming algorithm), since, at each sampling period, the predictions are linear. Benefiting from artificial target variables, the method is also able to avoid feasibility losses due to large set-point variations. Robust constraint satisfaction, closed-loop stability, and recursive feasibility certificates are provided, thanks to uncertainty propagation zonotopes and parameter-dependent terminal ingredients. A benchmark example is used to illustrate the effectiveness of the method, which is compared to state-of-the-art techniques.</description><subject>Automatic</subject><subject>Engineering Sciences</subject><subject>Linear parameter varying systems</subject><subject>Model predictive control</subject><subject>Nonlinear systems</subject><subject>Tracking</subject><subject>Zonotopes</subject><issn>0016-0032</issn><issn>1879-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUD1PwzAUtBBIlMJvwCtDij_yOUYVUKQgOgADi-W82MVpawcnrVR-PY6KujK9d6e7k-4QuqVkRglN79tZq720642xM0ZYHNg0o_wMTWieFRFLC36OJiRII0I4u0RXfd8GmFFCJuizxN7Vu37A1tkQoaTHg5ewNnaFX5ZzvOvH77tafmC1rVXTjFDaBv846wbXGcA7C8oP0tjhgDvvOrmSg3H2Gl1ouenVzd-dovfHh7f5Iqpen57nZRUBK5Ih4ilITXXOatBpWjAaFwRIo_M6IaqIkzxRHFQMAJyCrqXOgIOEnGqWN4pqPkV3x9wvuRGdN1vpD8JJIxZlJUYutE5ZnCZ7GrTZUQve9b1X-mSgRIxzilac5hTjnOI4Z3CWR6cKVfZGedGDUaF5Y7yCQTTO_JvxC-C4hDA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Morato, Marcelo M.</creator><creator>Cunha, Victor M.</creator><creator>Santos, Tito L.M.</creator><creator>Normey-Rico, Julio E.</creator><creator>Sename, Olivier</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7137-0522</orcidid><orcidid>https://orcid.org/0000-0001-6338-5073</orcidid><orcidid>https://orcid.org/0000-0002-6510-9803</orcidid><orcidid>https://orcid.org/0000-0001-9595-9000</orcidid></search><sort><creationdate>202404</creationdate><title>A robust nonlinear tracking MPC using qLPV embedding and zonotopic uncertainty propagation</title><author>Morato, Marcelo M. ; Cunha, Victor M. ; Santos, Tito L.M. ; Normey-Rico, Julio E. ; Sename, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-36caf1f82bcf66921490c0df8b50e94585e3ce4ccc31cfbaf7c3cac81f28de1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic</topic><topic>Engineering Sciences</topic><topic>Linear parameter varying systems</topic><topic>Model predictive control</topic><topic>Nonlinear systems</topic><topic>Tracking</topic><topic>Zonotopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morato, Marcelo M.</creatorcontrib><creatorcontrib>Cunha, Victor M.</creatorcontrib><creatorcontrib>Santos, Tito L.M.</creatorcontrib><creatorcontrib>Normey-Rico, Julio E.</creatorcontrib><creatorcontrib>Sename, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morato, Marcelo M.</au><au>Cunha, Victor M.</au><au>Santos, Tito L.M.</au><au>Normey-Rico, Julio E.</au><au>Sename, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust nonlinear tracking MPC using qLPV embedding and zonotopic uncertainty propagation</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2024-04</date><risdate>2024</risdate><volume>361</volume><issue>6</issue><spage>106713</spage><pages>106713-</pages><artnum>106713</artnum><issn>0016-0032</issn><eissn>1879-2693</eissn><abstract>In this paper, we propose a novel Nonlinear Model Predictive Control (NMPC) framework for tracking for piece-wise constant reference signals. The main novelty is the use of quasi-Linear Parameter Varying (qLPV) embeddings in order to describe the nonlinear dynamics. Furthermore, these embeddings are exploited by an extrapolation mechanism, which provides the future behaviour of the scheduling parameters with bounded estimation error. Therefore, the resulting NMPC becomes computationally efficient (comparable to a Quadratic Programming algorithm), since, at each sampling period, the predictions are linear. Benefiting from artificial target variables, the method is also able to avoid feasibility losses due to large set-point variations. Robust constraint satisfaction, closed-loop stability, and recursive feasibility certificates are provided, thanks to uncertainty propagation zonotopes and parameter-dependent terminal ingredients. A benchmark example is used to illustrate the effectiveness of the method, which is compared to state-of-the-art techniques.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jfranklin.2024.106713</doi><orcidid>https://orcid.org/0000-0002-7137-0522</orcidid><orcidid>https://orcid.org/0000-0001-6338-5073</orcidid><orcidid>https://orcid.org/0000-0002-6510-9803</orcidid><orcidid>https://orcid.org/0000-0001-9595-9000</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-0032 |
ispartof | Journal of the Franklin Institute, 2024-04, Vol.361 (6), p.106713, Article 106713 |
issn | 0016-0032 1879-2693 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03262465v1 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Automatic Engineering Sciences Linear parameter varying systems Model predictive control Nonlinear systems Tracking Zonotopes |
title | A robust nonlinear tracking MPC using qLPV embedding and zonotopic uncertainty propagation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20nonlinear%20tracking%20MPC%20using%20qLPV%20embedding%20and%20zonotopic%20uncertainty%20propagation&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Morato,%20Marcelo%20M.&rft.date=2024-04&rft.volume=361&rft.issue=6&rft.spage=106713&rft.pages=106713-&rft.artnum=106713&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2024.106713&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03262465v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0016003224001340&rfr_iscdi=true |