A robust nonlinear tracking MPC using qLPV embedding and zonotopic uncertainty propagation

In this paper, we propose a novel Nonlinear Model Predictive Control (NMPC) framework for tracking for piece-wise constant reference signals. The main novelty is the use of quasi-Linear Parameter Varying (qLPV) embeddings in order to describe the nonlinear dynamics. Furthermore, these embeddings are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Franklin Institute 2024-04, Vol.361 (6), p.106713, Article 106713
Hauptverfasser: Morato, Marcelo M., Cunha, Victor M., Santos, Tito L.M., Normey-Rico, Julio E., Sename, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 106713
container_title Journal of the Franklin Institute
container_volume 361
creator Morato, Marcelo M.
Cunha, Victor M.
Santos, Tito L.M.
Normey-Rico, Julio E.
Sename, Olivier
description In this paper, we propose a novel Nonlinear Model Predictive Control (NMPC) framework for tracking for piece-wise constant reference signals. The main novelty is the use of quasi-Linear Parameter Varying (qLPV) embeddings in order to describe the nonlinear dynamics. Furthermore, these embeddings are exploited by an extrapolation mechanism, which provides the future behaviour of the scheduling parameters with bounded estimation error. Therefore, the resulting NMPC becomes computationally efficient (comparable to a Quadratic Programming algorithm), since, at each sampling period, the predictions are linear. Benefiting from artificial target variables, the method is also able to avoid feasibility losses due to large set-point variations. Robust constraint satisfaction, closed-loop stability, and recursive feasibility certificates are provided, thanks to uncertainty propagation zonotopes and parameter-dependent terminal ingredients. A benchmark example is used to illustrate the effectiveness of the method, which is compared to state-of-the-art techniques.
doi_str_mv 10.1016/j.jfranklin.2024.106713
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03262465v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003224001340</els_id><sourcerecordid>oai_HAL_hal_03262465v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-36caf1f82bcf66921490c0df8b50e94585e3ce4ccc31cfbaf7c3cac81f28de1f3</originalsourceid><addsrcrecordid>eNqFUD1PwzAUtBBIlMJvwCtDij_yOUYVUKQgOgADi-W82MVpawcnrVR-PY6KujK9d6e7k-4QuqVkRglN79tZq720642xM0ZYHNg0o_wMTWieFRFLC36OJiRII0I4u0RXfd8GmFFCJuizxN7Vu37A1tkQoaTHg5ewNnaFX5ZzvOvH77tafmC1rVXTjFDaBv846wbXGcA7C8oP0tjhgDvvOrmSg3H2Gl1ouenVzd-dovfHh7f5Iqpen57nZRUBK5Ih4ilITXXOatBpWjAaFwRIo_M6IaqIkzxRHFQMAJyCrqXOgIOEnGqWN4pqPkV3x9wvuRGdN1vpD8JJIxZlJUYutE5ZnCZ7GrTZUQve9b1X-mSgRIxzilac5hTjnOI4Z3CWR6cKVfZGedGDUaF5Y7yCQTTO_JvxC-C4hDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A robust nonlinear tracking MPC using qLPV embedding and zonotopic uncertainty propagation</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Morato, Marcelo M. ; Cunha, Victor M. ; Santos, Tito L.M. ; Normey-Rico, Julio E. ; Sename, Olivier</creator><creatorcontrib>Morato, Marcelo M. ; Cunha, Victor M. ; Santos, Tito L.M. ; Normey-Rico, Julio E. ; Sename, Olivier</creatorcontrib><description>In this paper, we propose a novel Nonlinear Model Predictive Control (NMPC) framework for tracking for piece-wise constant reference signals. The main novelty is the use of quasi-Linear Parameter Varying (qLPV) embeddings in order to describe the nonlinear dynamics. Furthermore, these embeddings are exploited by an extrapolation mechanism, which provides the future behaviour of the scheduling parameters with bounded estimation error. Therefore, the resulting NMPC becomes computationally efficient (comparable to a Quadratic Programming algorithm), since, at each sampling period, the predictions are linear. Benefiting from artificial target variables, the method is also able to avoid feasibility losses due to large set-point variations. Robust constraint satisfaction, closed-loop stability, and recursive feasibility certificates are provided, thanks to uncertainty propagation zonotopes and parameter-dependent terminal ingredients. A benchmark example is used to illustrate the effectiveness of the method, which is compared to state-of-the-art techniques.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>DOI: 10.1016/j.jfranklin.2024.106713</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Automatic ; Engineering Sciences ; Linear parameter varying systems ; Model predictive control ; Nonlinear systems ; Tracking ; Zonotopes</subject><ispartof>Journal of the Franklin Institute, 2024-04, Vol.361 (6), p.106713, Article 106713</ispartof><rights>2024 The Franklin Institute</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-36caf1f82bcf66921490c0df8b50e94585e3ce4ccc31cfbaf7c3cac81f28de1f3</cites><orcidid>0000-0002-7137-0522 ; 0000-0001-6338-5073 ; 0000-0002-6510-9803 ; 0000-0001-9595-9000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2024.106713$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03262465$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morato, Marcelo M.</creatorcontrib><creatorcontrib>Cunha, Victor M.</creatorcontrib><creatorcontrib>Santos, Tito L.M.</creatorcontrib><creatorcontrib>Normey-Rico, Julio E.</creatorcontrib><creatorcontrib>Sename, Olivier</creatorcontrib><title>A robust nonlinear tracking MPC using qLPV embedding and zonotopic uncertainty propagation</title><title>Journal of the Franklin Institute</title><description>In this paper, we propose a novel Nonlinear Model Predictive Control (NMPC) framework for tracking for piece-wise constant reference signals. The main novelty is the use of quasi-Linear Parameter Varying (qLPV) embeddings in order to describe the nonlinear dynamics. Furthermore, these embeddings are exploited by an extrapolation mechanism, which provides the future behaviour of the scheduling parameters with bounded estimation error. Therefore, the resulting NMPC becomes computationally efficient (comparable to a Quadratic Programming algorithm), since, at each sampling period, the predictions are linear. Benefiting from artificial target variables, the method is also able to avoid feasibility losses due to large set-point variations. Robust constraint satisfaction, closed-loop stability, and recursive feasibility certificates are provided, thanks to uncertainty propagation zonotopes and parameter-dependent terminal ingredients. A benchmark example is used to illustrate the effectiveness of the method, which is compared to state-of-the-art techniques.</description><subject>Automatic</subject><subject>Engineering Sciences</subject><subject>Linear parameter varying systems</subject><subject>Model predictive control</subject><subject>Nonlinear systems</subject><subject>Tracking</subject><subject>Zonotopes</subject><issn>0016-0032</issn><issn>1879-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUD1PwzAUtBBIlMJvwCtDij_yOUYVUKQgOgADi-W82MVpawcnrVR-PY6KujK9d6e7k-4QuqVkRglN79tZq720642xM0ZYHNg0o_wMTWieFRFLC36OJiRII0I4u0RXfd8GmFFCJuizxN7Vu37A1tkQoaTHg5ewNnaFX5ZzvOvH77tafmC1rVXTjFDaBv846wbXGcA7C8oP0tjhgDvvOrmSg3H2Gl1ouenVzd-dovfHh7f5Iqpen57nZRUBK5Ih4ilITXXOatBpWjAaFwRIo_M6IaqIkzxRHFQMAJyCrqXOgIOEnGqWN4pqPkV3x9wvuRGdN1vpD8JJIxZlJUYutE5ZnCZ7GrTZUQve9b1X-mSgRIxzilac5hTjnOI4Z3CWR6cKVfZGedGDUaF5Y7yCQTTO_JvxC-C4hDA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Morato, Marcelo M.</creator><creator>Cunha, Victor M.</creator><creator>Santos, Tito L.M.</creator><creator>Normey-Rico, Julio E.</creator><creator>Sename, Olivier</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7137-0522</orcidid><orcidid>https://orcid.org/0000-0001-6338-5073</orcidid><orcidid>https://orcid.org/0000-0002-6510-9803</orcidid><orcidid>https://orcid.org/0000-0001-9595-9000</orcidid></search><sort><creationdate>202404</creationdate><title>A robust nonlinear tracking MPC using qLPV embedding and zonotopic uncertainty propagation</title><author>Morato, Marcelo M. ; Cunha, Victor M. ; Santos, Tito L.M. ; Normey-Rico, Julio E. ; Sename, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-36caf1f82bcf66921490c0df8b50e94585e3ce4ccc31cfbaf7c3cac81f28de1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic</topic><topic>Engineering Sciences</topic><topic>Linear parameter varying systems</topic><topic>Model predictive control</topic><topic>Nonlinear systems</topic><topic>Tracking</topic><topic>Zonotopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morato, Marcelo M.</creatorcontrib><creatorcontrib>Cunha, Victor M.</creatorcontrib><creatorcontrib>Santos, Tito L.M.</creatorcontrib><creatorcontrib>Normey-Rico, Julio E.</creatorcontrib><creatorcontrib>Sename, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morato, Marcelo M.</au><au>Cunha, Victor M.</au><au>Santos, Tito L.M.</au><au>Normey-Rico, Julio E.</au><au>Sename, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust nonlinear tracking MPC using qLPV embedding and zonotopic uncertainty propagation</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2024-04</date><risdate>2024</risdate><volume>361</volume><issue>6</issue><spage>106713</spage><pages>106713-</pages><artnum>106713</artnum><issn>0016-0032</issn><eissn>1879-2693</eissn><abstract>In this paper, we propose a novel Nonlinear Model Predictive Control (NMPC) framework for tracking for piece-wise constant reference signals. The main novelty is the use of quasi-Linear Parameter Varying (qLPV) embeddings in order to describe the nonlinear dynamics. Furthermore, these embeddings are exploited by an extrapolation mechanism, which provides the future behaviour of the scheduling parameters with bounded estimation error. Therefore, the resulting NMPC becomes computationally efficient (comparable to a Quadratic Programming algorithm), since, at each sampling period, the predictions are linear. Benefiting from artificial target variables, the method is also able to avoid feasibility losses due to large set-point variations. Robust constraint satisfaction, closed-loop stability, and recursive feasibility certificates are provided, thanks to uncertainty propagation zonotopes and parameter-dependent terminal ingredients. A benchmark example is used to illustrate the effectiveness of the method, which is compared to state-of-the-art techniques.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jfranklin.2024.106713</doi><orcidid>https://orcid.org/0000-0002-7137-0522</orcidid><orcidid>https://orcid.org/0000-0001-6338-5073</orcidid><orcidid>https://orcid.org/0000-0002-6510-9803</orcidid><orcidid>https://orcid.org/0000-0001-9595-9000</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-0032
ispartof Journal of the Franklin Institute, 2024-04, Vol.361 (6), p.106713, Article 106713
issn 0016-0032
1879-2693
language eng
recordid cdi_hal_primary_oai_HAL_hal_03262465v1
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Automatic
Engineering Sciences
Linear parameter varying systems
Model predictive control
Nonlinear systems
Tracking
Zonotopes
title A robust nonlinear tracking MPC using qLPV embedding and zonotopic uncertainty propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20nonlinear%20tracking%20MPC%20using%20qLPV%20embedding%20and%20zonotopic%20uncertainty%20propagation&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Morato,%20Marcelo%20M.&rft.date=2024-04&rft.volume=361&rft.issue=6&rft.spage=106713&rft.pages=106713-&rft.artnum=106713&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2024.106713&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03262465v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0016003224001340&rfr_iscdi=true