A robust nonlinear tracking MPC using qLPV embedding and zonotopic uncertainty propagation

In this paper, we propose a novel Nonlinear Model Predictive Control (NMPC) framework for tracking for piece-wise constant reference signals. The main novelty is the use of quasi-Linear Parameter Varying (qLPV) embeddings in order to describe the nonlinear dynamics. Furthermore, these embeddings are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Franklin Institute 2024-04, Vol.361 (6), p.106713, Article 106713
Hauptverfasser: Morato, Marcelo M., Cunha, Victor M., Santos, Tito L.M., Normey-Rico, Julio E., Sename, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a novel Nonlinear Model Predictive Control (NMPC) framework for tracking for piece-wise constant reference signals. The main novelty is the use of quasi-Linear Parameter Varying (qLPV) embeddings in order to describe the nonlinear dynamics. Furthermore, these embeddings are exploited by an extrapolation mechanism, which provides the future behaviour of the scheduling parameters with bounded estimation error. Therefore, the resulting NMPC becomes computationally efficient (comparable to a Quadratic Programming algorithm), since, at each sampling period, the predictions are linear. Benefiting from artificial target variables, the method is also able to avoid feasibility losses due to large set-point variations. Robust constraint satisfaction, closed-loop stability, and recursive feasibility certificates are provided, thanks to uncertainty propagation zonotopes and parameter-dependent terminal ingredients. A benchmark example is used to illustrate the effectiveness of the method, which is compared to state-of-the-art techniques.
ISSN:0016-0032
1879-2693
DOI:10.1016/j.jfranklin.2024.106713