Constructing Turing complete Euler flows in dimension 3

Can every physical system simulate any Turing machine? This is a classical problem that is intimately connected with the undecidability of certain physical phenomena. Concerning fluid flows, Moore [C. Moore, Nonlinearity 4, 199 (1991)] asked if hydrodynamics is capable of performing computations. Mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-05, Vol.118 (19), p.1-9, Article 2026818118
Hauptverfasser: Cardona, Robert, Miranda, Eva, Peralta-Salas, Daniel, Presas, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Can every physical system simulate any Turing machine? This is a classical problem that is intimately connected with the undecidability of certain physical phenomena. Concerning fluid flows, Moore [C. Moore, Nonlinearity 4, 199 (1991)] asked if hydrodynamics is capable of performing computations. More recently, Tao launched a program based on the Turing completeness of the Euler equations to address the blow-up problem in the Navier–Stokes equations. In this direction, the undecidability of some physical systems has been studied in recent years, from the quantum gap problem to quantum-field theories. To the best of our knowledge, the existence of undecidable particle paths of three-dimensional fluid flows has remained an elusive open problem since Moore’s works in the early 1990s. In this article, we construct a Turing complete stationary Euler flow on a Riemannian S3 and speculate on its implications concerning Tao’s approach to the blow-up problem in the Navier–Stokes equations.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2026818118