Least‐square collocation and Lagrange multipliers forTaylor meshless method

A recently proposed meshless method is discussed in this article. It relies on Taylor series, the shape functions being high degree polynomials deduced from the Partial Differential Equation (PDE). In this framework, an efficient technique to couple several polynomial approximations has been present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2019-01, Vol.35 (1), p.84-113
Hauptverfasser: Yang, Jie, Hu, Heng, Potier‐Ferry, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A recently proposed meshless method is discussed in this article. It relies on Taylor series, the shape functions being high degree polynomials deduced from the Partial Differential Equation (PDE). In this framework, an efficient technique to couple several polynomial approximations has been presented in (Tampango, Potier‐Ferry, Koutsawa, Tiem, Int. J. Numer. Meth. Eng. vol. 95 (2013) pp. 1094–1112): the boundary conditions were applied using the least‐square collocation and the interface was coupled by a bridging technique based on Lagrange multipliers. In this article, least‐square collocation and Lagrange multipliers are applied for boundary conditions, respectively, and least‐square collocation is revisited to account for the interface conditions in piecewise resolutions. Various combinations of these two techniques have been investigated and the numerical results prove their effectiveness to obtain very accurate solutions, even for large scale problems.
ISSN:0749-159X
1098-2426
DOI:10.1002/num.22287