Generalized Wasserstein barycenters between probability measures living on different subspaces
In this paper, we introduce a generalization of the Wasserstein barycenter, to a case where the initial probability measures live on different subspaces of R d. We study the existence and uniqueness of this barycenter, we show how it is related to a larger multimarginal optimal transport problem, an...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2022 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce a generalization of the Wasserstein barycenter, to a case where the initial probability measures live on different subspaces of R d. We study the existence and uniqueness of this barycenter, we show how it is related to a larger multimarginal optimal transport problem, and we propose a dual formulation. Finally, we explain how to compute numerically this generalized barycenter on discrete distributions, and we propose an explicit solution for Gaussian distributions. |
---|---|
ISSN: | 1050-5164 2168-8737 |