Generalized Wasserstein barycenters between probability measures living on different subspaces

In this paper, we introduce a generalization of the Wasserstein barycenter, to a case where the initial probability measures live on different subspaces of R d. We study the existence and uniqueness of this barycenter, we show how it is related to a larger multimarginal optimal transport problem, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2022
Hauptverfasser: Delon, Julie, Gozlan, Nathael, Saint-Dizier, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a generalization of the Wasserstein barycenter, to a case where the initial probability measures live on different subspaces of R d. We study the existence and uniqueness of this barycenter, we show how it is related to a larger multimarginal optimal transport problem, and we propose a dual formulation. Finally, we explain how to compute numerically this generalized barycenter on discrete distributions, and we propose an explicit solution for Gaussian distributions.
ISSN:1050-5164
2168-8737