Evidence of Bulk Proton Insertion in Nanostructured Anatase and Amorphous TiO2 Electrodes
Crystalline structures and lattice water molecules are believed to strongly influence the ability of metal oxides to reversibly and rapidly insert protons in aqueous batteries. In the present work, we performed a systematic analysis of the electrochemical charge storage properties of nanostructured...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2021-05, Vol.33 (9), p.3436-3448 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Crystalline structures and lattice water molecules are believed to strongly influence the ability of metal oxides to reversibly and rapidly insert protons in aqueous batteries. In the present work, we performed a systematic analysis of the electrochemical charge storage properties of nanostructured TiO2 electrodes composed of either anatase or amorphous TiO2 in a mild buffered aqueous electrolyte. We demonstrate that both materials allow reversible bulk proton insertion up to a maximal reversible gravimetric capacity of ∼150 mA·h·g–1. We also show that the TiO2 crystallinity governs the energetics of the charge storage process, with a phase transition for anatase, while having little effect on either the interfacial charge transfer kinetics or the apparent rate of proton diffusivity within the metal oxide. Finally, with both TiO2 electrodes, reversible proton insertion leads to gravimetric capacities as high as 95 mA·h·g–1 at 75 C. We also reveal two competitive reactions decreasing the Coulombic efficiency at low rates, i.e., hydrogen evolution and a nonfaradaic self-discharge reaction. Overall, this work provides a comprehensive overview of the proton-coupled electrochemical reactivity of TiO2 and highlights the key issues to be solved to truly benefit from the unique properties of protons as fast charge carriers in metal oxides. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.1c00840 |