A band factorization technique for transition matrix element asymptotics

A new method of evaluating transition matrix elements between wave functions associated with orthogonal polynomials is proposed. The technique relies on purely algebraic manipulation of the associated recurrence coefficients. The form of the matrix elements is perfectly suited to very large quantum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2006-09, Vol.175 (5), p.315-322
Hauptverfasser: Perrey-Debain, Emmanuel, Abrahams, I. David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new method of evaluating transition matrix elements between wave functions associated with orthogonal polynomials is proposed. The technique relies on purely algebraic manipulation of the associated recurrence coefficients. The form of the matrix elements is perfectly suited to very large quantum number calculations by using asymptotic series expansions. In practice, this allows the accurate and fast numerical treatment of transition matrix elements in the quasi-classical limit. Examples include the matrix elements of x p in the harmonic oscillator basis, and connections with the Wigner 3 j symbols.
ISSN:0010-4655
1879-2944
DOI:10.1016/j.cpc.2006.05.003