Omega 3 Improves Both apoB100-containing Lipoprotein Turnover and their Sphingolipid Profile in Hypertriglyceridemia
Abstract Context Evidence for an association between sphingolipids and metabolic disorders is increasingly reported. Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) improve apolipoprotein B100 (apoB100)-containing lipoprotein metabolism, but their effects on the sphingolipid content in...
Gespeichert in:
Veröffentlicht in: | The journal of clinical endocrinology and metabolism 2020-10, Vol.105 (10), p.3152-3164 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3164 |
---|---|
container_issue | 10 |
container_start_page | 3152 |
container_title | The journal of clinical endocrinology and metabolism |
container_volume | 105 |
creator | Ferchaud-Roucher, Véronique Zair, Yassine Aguesse, Audrey Krempf, Michel Ouguerram, Khadija |
description | Abstract
Context
Evidence for an association between sphingolipids and metabolic disorders is increasingly reported. Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) improve apolipoprotein B100 (apoB100)-containing lipoprotein metabolism, but their effects on the sphingolipid content in lipoproteins remain unknown.
Objectives
In subjects with hypertriglyceridemia, we analyzed the effect of n-3 LC-PUFAs on the turnover apoB100-containing lipoproteins and on their sphingolipid content and looked for the possible association between these lipid levels and apoB100-containing lipoprotein turnover parameters.
Methods
Six subjects underwent a kinetic study before and after n-3 supplementation for 2 months with 1 g of fish oil 3 times day containing 360 mg of eicosapentaenoic acid (EPA) and 240 mg of docosahexaenoic acid (DHA) in the form of triglycerides. We examined apoB100-containing lipoprotein turnover by primed perfusion labeled [5,5,5-2H3]-leucine and determined kinetic parameters using a multicompartmental model. We quantified sphingolipid species content in lipoproteins using mass spectrometry.
Results
Supplementation decreased very low-density lipoprotein (VLDL), triglyceride, and apoB100 concentrations. The VLDL neutral and polar lipids showed increased n-3 LC-PUFA and decreased n-6 LC-PUFA content. The conversion rate of VLDL1 to VLDL2 and of VLDL2 to LDL was increased. We measured a decrease in total apoB100 production and VLDL1 production. Supplementation reduced the total ceramide concentration in VLDL while the sphingomyelin content in LDL was increased. We found positive correlations between plasma palmitic acid and VLDL ceramide and between VLDL triglyceride and VLDL ceramide, and inverse correlations between VLDL n-3 LC-PUFA and VLDL production.
Conclusion
Based on these results, we hypothesize that the improvement in apoB100 metabolism during n-3 LC-PUFA supplementation is contributed to by changes in sphingolipids |
doi_str_mv | 10.1210/clinem/dgaa459 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03207838v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A643531087</galeid><oup_id>10.1210/clinem/dgaa459</oup_id><sourcerecordid>A643531087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5435-1383b5fb1ba9bc23418c4aeeebd141b4cfe03fcdb8db9b41a9ccf645f8248d633</originalsourceid><addsrcrecordid>eNqFkkFr3DAQhUVpabZprz0WQS_pwYlGktf2cRPabmAhhabQm5Dlsa1UtlzZTth_X5ndJlAClRBC4pvHzOMR8h7YOXBgF8bZHruLqtFapsULsoJCpkkGRfaSrBjjkBQZ_3lC3ozjHWMgZSpekxPBc5Zmkq3IdNNho6mg190Q_D2O9NJPLdWDvwTGEuP7Sdve9g3d2cFHZELb09s59BEOVPcVnVq0gX4f2kh5Zwdb0W_B19Yhjeh2P2CYgm3c3mCwFXZWvyWvau1GfHe8T8mPL59vr7bJ7ubr9dVml5hUijQBkYsyrUsodVEaLiTkRmpELCuQUEpTIxO1qcq8KotSgi6MqdcyrXMu82otxCn5dNBttVNDsJ0Oe-W1VdvNTi1_THCW5SK_h8ieHdg44-8Zx0l1djTonO7Rz6PisSMouJRZRD_-g975aEicJFIZMMEyCU9Uox0q29d-CtosomqzjmICWL5onT9Dxb0YFd3HxcdnC0zw4xiwfhwMmFoioQ6RUMdIxIIPx27nssPqEf-bgQjIA_Dg3YRh_OXmBwyqRe2mVrG45DrLE844g-WVxAPpk7l-Hv7Xwx_03NCH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471030741</pqid></control><display><type>article</type><title>Omega 3 Improves Both apoB100-containing Lipoprotein Turnover and their Sphingolipid Profile in Hypertriglyceridemia</title><source>ProQuest One Community College</source><source>MEDLINE</source><source>ProQuest Central (Alumni Edition)</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Ferchaud-Roucher, Véronique ; Zair, Yassine ; Aguesse, Audrey ; Krempf, Michel ; Ouguerram, Khadija</creator><creatorcontrib>Ferchaud-Roucher, Véronique ; Zair, Yassine ; Aguesse, Audrey ; Krempf, Michel ; Ouguerram, Khadija</creatorcontrib><description>Abstract
Context
Evidence for an association between sphingolipids and metabolic disorders is increasingly reported. Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) improve apolipoprotein B100 (apoB100)-containing lipoprotein metabolism, but their effects on the sphingolipid content in lipoproteins remain unknown.
Objectives
In subjects with hypertriglyceridemia, we analyzed the effect of n-3 LC-PUFAs on the turnover apoB100-containing lipoproteins and on their sphingolipid content and looked for the possible association between these lipid levels and apoB100-containing lipoprotein turnover parameters.
Methods
Six subjects underwent a kinetic study before and after n-3 supplementation for 2 months with 1 g of fish oil 3 times day containing 360 mg of eicosapentaenoic acid (EPA) and 240 mg of docosahexaenoic acid (DHA) in the form of triglycerides. We examined apoB100-containing lipoprotein turnover by primed perfusion labeled [5,5,5-2H3]-leucine and determined kinetic parameters using a multicompartmental model. We quantified sphingolipid species content in lipoproteins using mass spectrometry.
Results
Supplementation decreased very low-density lipoprotein (VLDL), triglyceride, and apoB100 concentrations. The VLDL neutral and polar lipids showed increased n-3 LC-PUFA and decreased n-6 LC-PUFA content. The conversion rate of VLDL1 to VLDL2 and of VLDL2 to LDL was increased. We measured a decrease in total apoB100 production and VLDL1 production. Supplementation reduced the total ceramide concentration in VLDL while the sphingomyelin content in LDL was increased. We found positive correlations between plasma palmitic acid and VLDL ceramide and between VLDL triglyceride and VLDL ceramide, and inverse correlations between VLDL n-3 LC-PUFA and VLDL production.
Conclusion
Based on these results, we hypothesize that the improvement in apoB100 metabolism during n-3 LC-PUFA supplementation is contributed to by changes in sphingolipids</description><identifier>ISSN: 0021-972X</identifier><identifier>EISSN: 1945-7197</identifier><identifier>DOI: 10.1210/clinem/dgaa459</identifier><identifier>PMID: 32805740</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Adult ; Apolipoprotein B-100 - metabolism ; Apolipoproteins ; Care and treatment ; Ceramide ; Development and progression ; Dietary Supplements ; Docosahexaenoic acid ; Eicosapentaenoic acid ; Fatty Acids, Omega-3 - administration & dosage ; Fish oils ; Health aspects ; Humanities and Social Sciences ; Humans ; Hyperlipidemia ; Hypertriglyceridemia ; Hypertriglyceridemia - blood ; Hypertriglyceridemia - drug therapy ; Hypertriglyceridemia - metabolism ; Leucine ; Lipid metabolism ; Lipids ; Lipoproteins ; Lipoproteins (very low density) ; Lipoproteins, VLDL - blood ; Lipoproteins, VLDL - metabolism ; Low density lipoprotein ; Male ; Mass spectroscopy ; Metabolic disorders ; Metabolism ; Middle Aged ; Omega-3 fatty acids ; Palmitic acid ; Perfusion ; Physiological aspects ; Pilot Projects ; Polyunsaturated fatty acids ; Sphingolipids ; Sphingolipids - blood ; Sphingolipids - metabolism ; Sphingomyelin ; Supplements ; Treatment Outcome ; Triglycerides</subject><ispartof>The journal of clinical endocrinology and metabolism, 2020-10, Vol.105 (10), p.3152-3164</ispartof><rights>Published by Oxford University Press on behalf of the Endocrine Society 2020 2020</rights><rights>Copyright © Oxford University Press 2015</rights><rights>Published by Oxford University Press on behalf of the Endocrine Society 2020.</rights><rights>COPYRIGHT 2020 Oxford University Press</rights><rights>Published by Oxford University Press on behalf of the Endocrine Society 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5435-1383b5fb1ba9bc23418c4aeeebd141b4cfe03fcdb8db9b41a9ccf645f8248d633</citedby><cites>FETCH-LOGICAL-c5435-1383b5fb1ba9bc23418c4aeeebd141b4cfe03fcdb8db9b41a9ccf645f8248d633</cites><orcidid>0000-0003-0058-6462 ; 0000-0001-6809-1488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2471030741?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,21388,21389,27924,27925,33530,33531,33744,33745,43659,43805,64385,64387,64389,72469,73123,73128,73129,73131</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32805740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03207838$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferchaud-Roucher, Véronique</creatorcontrib><creatorcontrib>Zair, Yassine</creatorcontrib><creatorcontrib>Aguesse, Audrey</creatorcontrib><creatorcontrib>Krempf, Michel</creatorcontrib><creatorcontrib>Ouguerram, Khadija</creatorcontrib><title>Omega 3 Improves Both apoB100-containing Lipoprotein Turnover and their Sphingolipid Profile in Hypertriglyceridemia</title><title>The journal of clinical endocrinology and metabolism</title><addtitle>J Clin Endocrinol Metab</addtitle><description>Abstract
Context
Evidence for an association between sphingolipids and metabolic disorders is increasingly reported. Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) improve apolipoprotein B100 (apoB100)-containing lipoprotein metabolism, but their effects on the sphingolipid content in lipoproteins remain unknown.
Objectives
In subjects with hypertriglyceridemia, we analyzed the effect of n-3 LC-PUFAs on the turnover apoB100-containing lipoproteins and on their sphingolipid content and looked for the possible association between these lipid levels and apoB100-containing lipoprotein turnover parameters.
Methods
Six subjects underwent a kinetic study before and after n-3 supplementation for 2 months with 1 g of fish oil 3 times day containing 360 mg of eicosapentaenoic acid (EPA) and 240 mg of docosahexaenoic acid (DHA) in the form of triglycerides. We examined apoB100-containing lipoprotein turnover by primed perfusion labeled [5,5,5-2H3]-leucine and determined kinetic parameters using a multicompartmental model. We quantified sphingolipid species content in lipoproteins using mass spectrometry.
Results
Supplementation decreased very low-density lipoprotein (VLDL), triglyceride, and apoB100 concentrations. The VLDL neutral and polar lipids showed increased n-3 LC-PUFA and decreased n-6 LC-PUFA content. The conversion rate of VLDL1 to VLDL2 and of VLDL2 to LDL was increased. We measured a decrease in total apoB100 production and VLDL1 production. Supplementation reduced the total ceramide concentration in VLDL while the sphingomyelin content in LDL was increased. We found positive correlations between plasma palmitic acid and VLDL ceramide and between VLDL triglyceride and VLDL ceramide, and inverse correlations between VLDL n-3 LC-PUFA and VLDL production.
Conclusion
Based on these results, we hypothesize that the improvement in apoB100 metabolism during n-3 LC-PUFA supplementation is contributed to by changes in sphingolipids</description><subject>Adult</subject><subject>Apolipoprotein B-100 - metabolism</subject><subject>Apolipoproteins</subject><subject>Care and treatment</subject><subject>Ceramide</subject><subject>Development and progression</subject><subject>Dietary Supplements</subject><subject>Docosahexaenoic acid</subject><subject>Eicosapentaenoic acid</subject><subject>Fatty Acids, Omega-3 - administration & dosage</subject><subject>Fish oils</subject><subject>Health aspects</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hyperlipidemia</subject><subject>Hypertriglyceridemia</subject><subject>Hypertriglyceridemia - blood</subject><subject>Hypertriglyceridemia - drug therapy</subject><subject>Hypertriglyceridemia - metabolism</subject><subject>Leucine</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Lipoproteins</subject><subject>Lipoproteins (very low density)</subject><subject>Lipoproteins, VLDL - blood</subject><subject>Lipoproteins, VLDL - metabolism</subject><subject>Low density lipoprotein</subject><subject>Male</subject><subject>Mass spectroscopy</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Omega-3 fatty acids</subject><subject>Palmitic acid</subject><subject>Perfusion</subject><subject>Physiological aspects</subject><subject>Pilot Projects</subject><subject>Polyunsaturated fatty acids</subject><subject>Sphingolipids</subject><subject>Sphingolipids - blood</subject><subject>Sphingolipids - metabolism</subject><subject>Sphingomyelin</subject><subject>Supplements</subject><subject>Treatment Outcome</subject><subject>Triglycerides</subject><issn>0021-972X</issn><issn>1945-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqFkkFr3DAQhUVpabZprz0WQS_pwYlGktf2cRPabmAhhabQm5Dlsa1UtlzZTth_X5ndJlAClRBC4pvHzOMR8h7YOXBgF8bZHruLqtFapsULsoJCpkkGRfaSrBjjkBQZ_3lC3ozjHWMgZSpekxPBc5Zmkq3IdNNho6mg190Q_D2O9NJPLdWDvwTGEuP7Sdve9g3d2cFHZELb09s59BEOVPcVnVq0gX4f2kh5Zwdb0W_B19Yhjeh2P2CYgm3c3mCwFXZWvyWvau1GfHe8T8mPL59vr7bJ7ubr9dVml5hUijQBkYsyrUsodVEaLiTkRmpELCuQUEpTIxO1qcq8KotSgi6MqdcyrXMu82otxCn5dNBttVNDsJ0Oe-W1VdvNTi1_THCW5SK_h8ieHdg44-8Zx0l1djTonO7Rz6PisSMouJRZRD_-g975aEicJFIZMMEyCU9Uox0q29d-CtosomqzjmICWL5onT9Dxb0YFd3HxcdnC0zw4xiwfhwMmFoioQ6RUMdIxIIPx27nssPqEf-bgQjIA_Dg3YRh_OXmBwyqRe2mVrG45DrLE844g-WVxAPpk7l-Hv7Xwx_03NCH</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Ferchaud-Roucher, Véronique</creator><creator>Zair, Yassine</creator><creator>Aguesse, Audrey</creator><creator>Krempf, Michel</creator><creator>Ouguerram, Khadija</creator><general>Oxford University Press</general><general>Copyright Oxford University Press</general><general>Endocrine Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>BXJBU</scope><orcidid>https://orcid.org/0000-0003-0058-6462</orcidid><orcidid>https://orcid.org/0000-0001-6809-1488</orcidid></search><sort><creationdate>202010</creationdate><title>Omega 3 Improves Both apoB100-containing Lipoprotein Turnover and their Sphingolipid Profile in Hypertriglyceridemia</title><author>Ferchaud-Roucher, Véronique ; Zair, Yassine ; Aguesse, Audrey ; Krempf, Michel ; Ouguerram, Khadija</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5435-1383b5fb1ba9bc23418c4aeeebd141b4cfe03fcdb8db9b41a9ccf645f8248d633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Apolipoprotein B-100 - metabolism</topic><topic>Apolipoproteins</topic><topic>Care and treatment</topic><topic>Ceramide</topic><topic>Development and progression</topic><topic>Dietary Supplements</topic><topic>Docosahexaenoic acid</topic><topic>Eicosapentaenoic acid</topic><topic>Fatty Acids, Omega-3 - administration & dosage</topic><topic>Fish oils</topic><topic>Health aspects</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hyperlipidemia</topic><topic>Hypertriglyceridemia</topic><topic>Hypertriglyceridemia - blood</topic><topic>Hypertriglyceridemia - drug therapy</topic><topic>Hypertriglyceridemia - metabolism</topic><topic>Leucine</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Lipoproteins</topic><topic>Lipoproteins (very low density)</topic><topic>Lipoproteins, VLDL - blood</topic><topic>Lipoproteins, VLDL - metabolism</topic><topic>Low density lipoprotein</topic><topic>Male</topic><topic>Mass spectroscopy</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Omega-3 fatty acids</topic><topic>Palmitic acid</topic><topic>Perfusion</topic><topic>Physiological aspects</topic><topic>Pilot Projects</topic><topic>Polyunsaturated fatty acids</topic><topic>Sphingolipids</topic><topic>Sphingolipids - blood</topic><topic>Sphingolipids - metabolism</topic><topic>Sphingomyelin</topic><topic>Supplements</topic><topic>Treatment Outcome</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferchaud-Roucher, Véronique</creatorcontrib><creatorcontrib>Zair, Yassine</creatorcontrib><creatorcontrib>Aguesse, Audrey</creatorcontrib><creatorcontrib>Krempf, Michel</creatorcontrib><creatorcontrib>Ouguerram, Khadija</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>The journal of clinical endocrinology and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferchaud-Roucher, Véronique</au><au>Zair, Yassine</au><au>Aguesse, Audrey</au><au>Krempf, Michel</au><au>Ouguerram, Khadija</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Omega 3 Improves Both apoB100-containing Lipoprotein Turnover and their Sphingolipid Profile in Hypertriglyceridemia</atitle><jtitle>The journal of clinical endocrinology and metabolism</jtitle><addtitle>J Clin Endocrinol Metab</addtitle><date>2020-10</date><risdate>2020</risdate><volume>105</volume><issue>10</issue><spage>3152</spage><epage>3164</epage><pages>3152-3164</pages><issn>0021-972X</issn><eissn>1945-7197</eissn><abstract>Abstract
Context
Evidence for an association between sphingolipids and metabolic disorders is increasingly reported. Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) improve apolipoprotein B100 (apoB100)-containing lipoprotein metabolism, but their effects on the sphingolipid content in lipoproteins remain unknown.
Objectives
In subjects with hypertriglyceridemia, we analyzed the effect of n-3 LC-PUFAs on the turnover apoB100-containing lipoproteins and on their sphingolipid content and looked for the possible association between these lipid levels and apoB100-containing lipoprotein turnover parameters.
Methods
Six subjects underwent a kinetic study before and after n-3 supplementation for 2 months with 1 g of fish oil 3 times day containing 360 mg of eicosapentaenoic acid (EPA) and 240 mg of docosahexaenoic acid (DHA) in the form of triglycerides. We examined apoB100-containing lipoprotein turnover by primed perfusion labeled [5,5,5-2H3]-leucine and determined kinetic parameters using a multicompartmental model. We quantified sphingolipid species content in lipoproteins using mass spectrometry.
Results
Supplementation decreased very low-density lipoprotein (VLDL), triglyceride, and apoB100 concentrations. The VLDL neutral and polar lipids showed increased n-3 LC-PUFA and decreased n-6 LC-PUFA content. The conversion rate of VLDL1 to VLDL2 and of VLDL2 to LDL was increased. We measured a decrease in total apoB100 production and VLDL1 production. Supplementation reduced the total ceramide concentration in VLDL while the sphingomyelin content in LDL was increased. We found positive correlations between plasma palmitic acid and VLDL ceramide and between VLDL triglyceride and VLDL ceramide, and inverse correlations between VLDL n-3 LC-PUFA and VLDL production.
Conclusion
Based on these results, we hypothesize that the improvement in apoB100 metabolism during n-3 LC-PUFA supplementation is contributed to by changes in sphingolipids</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>32805740</pmid><doi>10.1210/clinem/dgaa459</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0058-6462</orcidid><orcidid>https://orcid.org/0000-0001-6809-1488</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-972X |
ispartof | The journal of clinical endocrinology and metabolism, 2020-10, Vol.105 (10), p.3152-3164 |
issn | 0021-972X 1945-7197 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03207838v1 |
source | ProQuest One Community College; MEDLINE; ProQuest Central (Alumni Edition); Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Adult Apolipoprotein B-100 - metabolism Apolipoproteins Care and treatment Ceramide Development and progression Dietary Supplements Docosahexaenoic acid Eicosapentaenoic acid Fatty Acids, Omega-3 - administration & dosage Fish oils Health aspects Humanities and Social Sciences Humans Hyperlipidemia Hypertriglyceridemia Hypertriglyceridemia - blood Hypertriglyceridemia - drug therapy Hypertriglyceridemia - metabolism Leucine Lipid metabolism Lipids Lipoproteins Lipoproteins (very low density) Lipoproteins, VLDL - blood Lipoproteins, VLDL - metabolism Low density lipoprotein Male Mass spectroscopy Metabolic disorders Metabolism Middle Aged Omega-3 fatty acids Palmitic acid Perfusion Physiological aspects Pilot Projects Polyunsaturated fatty acids Sphingolipids Sphingolipids - blood Sphingolipids - metabolism Sphingomyelin Supplements Treatment Outcome Triglycerides |
title | Omega 3 Improves Both apoB100-containing Lipoprotein Turnover and their Sphingolipid Profile in Hypertriglyceridemia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Omega%203%20Improves%20Both%20apoB100-containing%20Lipoprotein%20Turnover%20and%20their%20Sphingolipid%20Profile%20in%20Hypertriglyceridemia&rft.jtitle=The%20journal%20of%20clinical%20endocrinology%20and%20metabolism&rft.au=Ferchaud-Roucher,%20V%C3%A9ronique&rft.date=2020-10&rft.volume=105&rft.issue=10&rft.spage=3152&rft.epage=3164&rft.pages=3152-3164&rft.issn=0021-972X&rft.eissn=1945-7197&rft_id=info:doi/10.1210/clinem/dgaa459&rft_dat=%3Cgale_hal_p%3EA643531087%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471030741&rft_id=info:pmid/32805740&rft_galeid=A643531087&rft_oup_id=10.1210/clinem/dgaa459&rfr_iscdi=true |