Omega 3 Improves Both apoB100-containing Lipoprotein Turnover and their Sphingolipid Profile in Hypertriglyceridemia

Abstract Context Evidence for an association between sphingolipids and metabolic disorders is increasingly reported. Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) improve apolipoprotein B100 (apoB100)-containing lipoprotein metabolism, but their effects on the sphingolipid content in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of clinical endocrinology and metabolism 2020-10, Vol.105 (10), p.3152-3164
Hauptverfasser: Ferchaud-Roucher, Véronique, Zair, Yassine, Aguesse, Audrey, Krempf, Michel, Ouguerram, Khadija
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Context Evidence for an association between sphingolipids and metabolic disorders is increasingly reported. Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) improve apolipoprotein B100 (apoB100)-containing lipoprotein metabolism, but their effects on the sphingolipid content in lipoproteins remain unknown. Objectives In subjects with hypertriglyceridemia, we analyzed the effect of n-3 LC-PUFAs on the turnover apoB100-containing lipoproteins and on their sphingolipid content and looked for the possible association between these lipid levels and apoB100-containing lipoprotein turnover parameters. Methods Six subjects underwent a kinetic study before and after n-3 supplementation for 2 months with 1 g of fish oil 3 times day containing 360 mg of eicosapentaenoic acid (EPA) and 240 mg of docosahexaenoic acid (DHA) in the form of triglycerides. We examined apoB100-containing lipoprotein turnover by primed perfusion labeled [5,5,5-2H3]-leucine and determined kinetic parameters using a multicompartmental model. We quantified sphingolipid species content in lipoproteins using mass spectrometry. Results Supplementation decreased very low-density lipoprotein (VLDL), triglyceride, and apoB100 concentrations. The VLDL neutral and polar lipids showed increased n-3 LC-PUFA and decreased n-6 LC-PUFA content. The conversion rate of VLDL1 to VLDL2 and of VLDL2 to LDL was increased. We measured a decrease in total apoB100 production and VLDL1 production. Supplementation reduced the total ceramide concentration in VLDL while the sphingomyelin content in LDL was increased. We found positive correlations between plasma palmitic acid and VLDL ceramide and between VLDL triglyceride and VLDL ceramide, and inverse correlations between VLDL n-3 LC-PUFA and VLDL production. Conclusion Based on these results, we hypothesize that the improvement in apoB100 metabolism during n-3 LC-PUFA supplementation is contributed to by changes in sphingolipids
ISSN:0021-972X
1945-7197
DOI:10.1210/clinem/dgaa459