Effect of probe geometry on the Hall response in an inhomogeneous magnetic field: A numerical study

The effect of probe geometry on the classical Hall response to a weak perpendicular inhomogeneous magnetic field is studied numerically. An electric potential equation based on a classical model of the two-dimensional Hall effect is solved numerically for a generalized flux distribution to find the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1998-06, Vol.83 (11), p.6161-6165
Hauptverfasser: Liu, S., Guillou, H., Kent, A. D., Stupian, G. W., Leung, M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of probe geometry on the classical Hall response to a weak perpendicular inhomogeneous magnetic field is studied numerically. An electric potential equation based on a classical model of the two-dimensional Hall effect is solved numerically for a generalized flux distribution to find the Hall response function. We find that the magnitude and shape of this response function is strongly affected by probe geometry. Asymmetric cross-shaped Hall probes, with one narrow voltage lead, have a strongly peaked response more localized than in symmetric probe arrangements. This suggests novel lithographic patterns that may improve the spatial resolution of Hall magnetometry and scanning Hall probe microscopy.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.367485