An automata-theoretic approach to constraint LTL

We consider an extension of linear-time temporal logic (LTL) with constraints interpreted over a concrete domain. We use a new automata-theoretic technique to show PSPACE decidability of the logic for the constraint systems ( Z , < , = ) and ( N , < , = ). Along the way, we give an automata-th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and computation 2007, Vol.205 (3), p.380-415
Hauptverfasser: Demri, Stéphane, D’Souza, Deepak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider an extension of linear-time temporal logic (LTL) with constraints interpreted over a concrete domain. We use a new automata-theoretic technique to show PSPACE decidability of the logic for the constraint systems ( Z , < , = ) and ( N , < , = ). Along the way, we give an automata-theoretic proof of a result of Balbiani and Condotta when the constraint system satisfies the completion property. Our decision procedures extend easily to handle extensions of the logic with past-time operators and constants, as well as an extension of the temporal language itself to monadic second order logic. Finally we show that the logic becomes undecidable when one considers constraint systems that allow a counting mechanism.
ISSN:0890-5401
1090-2651
DOI:10.1016/j.ic.2006.09.006