LTL with the freeze quantifier and register automata

A data word is a sequence of pairs of a letter from a finite alphabet and an element from an infinite set, where the latter can only be compared for equality. To reason about data words, linear temporal logic is extended by the freeze quantifier, which stores the element at the current word position...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on computational logic 2009-01, Vol.10 (3), p.1-30
Hauptverfasser: Demri, Stephane, Lazic, Ranko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A data word is a sequence of pairs of a letter from a finite alphabet and an element from an infinite set, where the latter can only be compared for equality. To reason about data words, linear temporal logic is extended by the freeze quantifier, which stores the element at the current word position into a register, for equality comparisons deeper in the formula. By translations from the logic to alternating automata with registers and then to faulty counter automata whose counters may erroneously increase at any time, and from faulty and error-free counter automata to the logic, we obtain a complete complexity table for logical fragments defined by varying the set of temporal operators and the number of registers. In particular, the logic with future-time operators and 1 register is decidable but not primitive recursive over finite data words. Adding past-time operators or 1 more register, or switching to infinite data words, causes undecidability.
ISSN:1529-3785
1557-945X
DOI:10.1145/1507244.1507246