A semantics for nabla

We give a semantics for a classical variant of Dale Miller and Alwen Tiu’s logic FOλ∇. Our semantics validates the rule that nabla x implies exists x, but is otherwise faithful to the authors’ original intentions. The semantics is based on a category of so-called nabla sets, which are simply strictl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical structures in computer science 2019-09, Vol.29 (8), p.1250-1274
1. Verfasser: GOUBAULT-LARRECQ, JEAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a semantics for a classical variant of Dale Miller and Alwen Tiu’s logic FOλ∇. Our semantics validates the rule that nabla x implies exists x, but is otherwise faithful to the authors’ original intentions. The semantics is based on a category of so-called nabla sets, which are simply strictly increasing sequences of non-empty sets. We show that the logic is sound for that semantics. Assuming there is a unique base type ι, we show that it is complete for Henkin structures, incomplete for standard structures in general, but complete for standard structures in the case of Π1 formulae, and that includes all first-order formulae.
ISSN:0960-1295
1469-8072
DOI:10.1017/S0960129518000063